STRUCTURAL ANALYSIS OF CYLINDRICAL SHAPED COMPOSITE AND TRADITIONAL NON COMPOSITE MATERIAL

Prof. M.M. Mirza
Department of Mechanical Design Engineering,
RIT, Islampur, Maharashtra, India

Rajat Rajaram Patil
Department of Mechanical Design Engineering,
RIT, Islampur, Maharashtra, India

Abstract— So far, structural analysis of square shaped composite material had carried out. There was untouched area of circular shaped composite material. We had carried out finite element analysis of circular shaped GFRP composite material and regular non composite (steel) material. finite element analysis results are compared with each other. We have checked feasibility of composite material over non composite material.

Keywords— Composite material, GFRP

I. INTRODUCTION

Composite material is nothing but combination of two or more material to achieve result as improved property material. modern era is adopting composite material products instead of traditional material. Properties such as high strength to weight ratio, ability to bring tailor made properties, good electrical and thermal properties make composite material ideal than traditional material. Composite materials are widely taking as substitute over other material because of their low weight, corrosion resistance, high fatigue strength property. Composite materials are classified as particulate composite, flake composite, fiber composite, laminated composite, filled composite. Here we are interested in laminated composites.

Input average characteristic analysis of material is essential and dominant part. Such characteristic can be predicted on the basis of constituent arrangement. conventional isotropic material consist two elastic constant and two strength parameters.

Metal matrix composites are preferable over monolithic metals. Reason behind it is high strength and high modulus. High service temperature, insensitivity to moisture, higher electrical and thermal conductivity good wear resistant are essential properties of metal matrix component.

Laminated composite consist number of layers of any suitable thickness over each other. This layers are also called as lamina. Fiber orientation and material property are impacting factors in laminated composite. Length, shape, orientation, material are important factors which contribute to mechanical performance. Long and continues fibers are preferable. Unidirectional fibers gives high stiffness and strength.

Composite material playing dominating role in current era. composite material reduces weight without sacrificing performance. Structural analysis of composite material play vital role before manufacturing. So this paper gives knowledge, why composite materials are preferable over traditional non composite material.

II. DESIGN

a) Dimensional design

The geometry of cylinder is shown in figure. It has been approximated by hemispherical ends of 160 mm radius. Length of the cylindrical portion is taken as 360 mm. The total length of the cylinder is taken as 680 mm. Its assumed that internal pressure load of 1.2 MPa has been applied.

b) Analytical calculations for cylindrical shaped component

We have ,
P = 1.2 MPa D = 320 mm

1) Cylindrical portion hoop stress (σh)

\[
(\sigma_h) = \frac{PD}{2t}
\]

\[
= \frac{1.2 \times 320}{2 \times 2.5}
\]

=76.8 Mpa

2) Longitudinal stress (σL)
\[\sigma_L = \frac{PD}{4t} = \frac{1.2 \times 320}{4 \times 2.5} = 38.4 \text{ Mpa} \]

3) Von mises stress (\(\sigma_v\))

\[\sigma_v = \sqrt{(\sigma_h)(\sigma_h) + (\sigma_L)(\sigma_L) - (\sigma_h)(\sigma_L)} \]

\[= \sqrt{(76.8)(76.8) + (38.4)(38.4) - (76.8)(38.4)} \]

\[= 66.5 \text{ Mpa} \]

III. **FINITE ELEMENT ANALYSIS**

Ansys work for longitudinal stress is as shown in fig. The maximum stress is occurring at the mid plane at which cylinder is constrained along the longitudinal direction (x direction).

Case 1: Cylindrical component made up of steel

- Properties of steel used:
 - Density of steel = 7.8 g/cm^3
 - Young's modulus of steel = 207 Gpa
 - Poisons ratio of steel = 0.35

We got from Ansys work:
1. Maximum longitudinal stress = 48.584 MPa
2. Maximum hoop stress = 77.664 MPa
3. Maximum von-mises stress = 68.079 MPa

Case 2: Cylindrical component made up of GFRP

The material properties are listed below.
- Elastic modulus = 26 GPa
- Poisons ratio = 0.28
- Density = 1.8 kg/mm^3
- Yield strength = 125 MPa

Contour plot for GFRP cylinder longitudinal stress

Contour plot for GFRP cylinder hoop stress
Contour plot for GFRP cylinder vonmises stress
We got following ansys results of GFRP material
1 Maximum longitudinal stress = 48.507 MPa
2 Maximum hoop stress = 77.489 MPa
3 Maximum von-mises stress = 68.1 MPa

IV. RESULTS
After the finite element analysis we got FEA results for composite and non composite cylindrical shaped component. Results are tabulated below.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>GFRP</th>
<th>STEEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. vonmises stress in MPa</td>
<td>68.1</td>
<td>68.79</td>
</tr>
<tr>
<td>Max. hoop stress in MPa</td>
<td>77.489</td>
<td>77.664</td>
</tr>
<tr>
<td>Max. longitudinal stress in MPa</td>
<td>48.507</td>
<td>48.584</td>
</tr>
</tbody>
</table>

V. CONCLUSION
After watching FEA results we can conclude that composite materials are preferable than non composite material. Also weight of component can be reduced by using composite material over traditional material keeping stress value within limit.

VI. REFERENCE
[1] Quanjin m a., Rejab m r b, Nallapaneni Manoj Kumar, (2009) ,“Experimental assessment of the 3-axis filament windingmachine performance”.Published by Elsevier B.V.Results in Engineering 2 100017

351