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Abstract: Multimodal emotion recognition is a research 
area that involves using signals of various natures, such 
as facial expressions, speech, gestures, and physiological 
signals, to recognize emotions accurately. This field has 
gained importance due to its potential applications in 
decision-making, human recognition, and social 
interaction. One of the significant challenges in 
multimodal emotion recognition is feature extraction, 
which involves identifying the relevant features from the 
signals that carry emotional information. Various 
techniques have been developed for feature extraction, 
including machine learning-based methods, such as deep 
learning, feature fusion, and feature selection. These 
techniques aim to extract the most relevant and 
discriminative features from the signals to improve the 
accuracy of emotion recognition. 
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I. INTRODUCTION 
Emotions are a combination of physiological and mental 
expressions that result from different faculties and 
thoughts[1]. Positive emotions such as excitement and 
happiness, and negative emotions like anger and sadness, 
have a visible impact on human behavior. Emotion 
recognition is a crucial factor applied in effective computing 
to create an efficient environment for man-machine 
interactions[1,14].To achieve effective man-machine 
interactions, researchers have utilized several pieces of 
information that signify emotions[2]. Changes in people's 
emotions can cause mental, behavioral, and physical 
changes. Facial expressions, posture, physiological 

responses, and voice signals are some of the means through 
which individuals communicate their emotions[5,6,7,8]. 
Additionally, deeper insights can be gleaned from the way 
people interact with others. 
As of now, a portion of the specialists began their 
concentrate on Emotion acknowledgment in view of 
multimodal signals, yet at the same time the absence of key 
highlights and element overt repetitiveness issues of 
multimodal combination need to settled [42]. 
Valence and arousal are the commonly used dimensional 
spaces for emotion recognition, which define emotions 
based on the level of activation or arousal and the negativity 
or positivity of the emotional state. These dimensional 
spaces are often used in AI-based techniques for emotion 
recognition[7]. 
Regression and classification techniques have been 
extensively studied in previous works, where valence or 
arousal space is used to recognize basic emotions. However, 
some emotions overlap, and common personal states are not 
well differentiated based on classification. In recent years, 
Deep Neural Networks (DNNs) have been introduced in 
emotion recognition, and their results show better 
performance compared to shallow techniques [5,7,13,51]. 
Moreover, several multimodal architectures have been 
designed to take advantage of the benefits of both 
approaches, which can be categorized into two classes: 
supervised and joint. In supervised multimodal 
architectures, each modality is processed separately, and the 
results are combined using fusion techniques. In joint 
architectures, all modalities are processed simultaneously, 
and the results are integrated at a later stage. These 
multimodal architectures have shown promising results in 
improving the accuracy of emotion recognition systems. 
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The main objective of this review is to provide a 
comprehensive study of various emotion recognition 
methodologies considering multimodal signals. Based on 
emotion classification, current designs are categorized into 
deep learning, multimodal system, and fusion, among 
others. This review considers traditional methods for 
emotion recognition for analysis purposes. The study is 
carried out by considering methodology used, recognition 
rate and datasets used. Additionally, performance evaluation 
measures are considered for evaluating the performance of 
the proposed emotion recognition techniques. 
This article is arrangedas follows:Section 2 elaborates 
Comparison study and Feature Direction and section 3 

shows the issues faced by conventional techniques. Section 
4 discussed the analysis of techniques with respect to 
performance metrics, toolset, year of publication, and 
concludes the paper in section 5. 
 

II. COMPARATIVE STUDY AND FEATURE 
DIRECTION 

The review of numerous emotion recognition strategies is 
described in this section. Table 1 will demonstrate the 
feature extractions techniques on video, EEG and 
Physiological inputs. 

 
Table 1. Different Types of Features, Classifier and Dataset in Video Emotional Recognition System 

Ref Feature Extraction Methods Recognition 
rate Types of Dataset Methods 

[4] Convolution Neural Network 78.9 % AVEC 2016 & 
RECOLA 

Long short-term 
memory 

[5] Context sensitive technique 72 % IEMOCAP Hidden Markov Models 
[6] Gabor Wavelet Transform 90.4 % Speech & Faces Backpropagation Neural 

network 

[12] 
cascading 3-dimensional convolution 
neural networks (C3Ds) 
and deep belief networks (DBNs) 

83.34 % eNTERFACE 
and FABO 

Bilinear pooling 

[15] 3D Convolution – Long Short Term 
Memory 

96.75% & 
78.75 % 

MOUD and 
IEMOCAP 

CNN-RNN Hybrid 
Model 

[17] Fuzzy CNN 83.2 % Movie Clips Convolution Neuro-
fuzzy network 

[18] Bidirectional Principal Component 
Analysis & Least square LDA 

90.83% & 
86.67 % 

RML & 
eNTERFACE’05 

Optimized Kernel-
Laplacian Radial basis 
Function 

[19] Fusion Method 92.22% DEAP Hybrid Fusion Method 
[22] Canonical corelation 71.03 % eNTERFACE Support Vector Machine 

[26] PRAAT 80 % Spontaneous 
Filipino 

Support Vector Machine 

[27] Canonical corelation 85 % DEAP Proposed CCA 
[28] MFCC 71.8 % IEMOCAP RNNs 
[29] Statistical functionals 75.5 % IEMOCAP Deep Neural Network 
[35] Statistical methods 83.10 % emoFBVP Deep Belief Network 
[38] Deep spatio-temporal  83.34 % eNTERFACE Deep Belief Network 

[39] Information Fusion 84 % eNTERFACE kernel entropy 
component analysis 

 
Table 2. Different Types of Features, Classifier and Dataset in EEG& Physiological Emotional Recognition System 

Ref Types of Features Recognition rate Types of 
Dataset 

Methods 

[1] PSD(Power Spectral Density) 
Differential Entropy 

91.01% & 
83.25% 

SEED & 
DEAP 

Bimodal Deep Autoencoder 
& SVM linear classifier 

[3] Blood Volume Pressure, Skin 
Temperature & GSR 

84.18% & 83.04 
% DEAP Multiple Fusion layer based 

stacked autoencoder 

[7] masseter muscle, blood volume 
pressure, skin conductance 72.1 % 

MIT 
Media 
Lab 

Fusion Method 
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[8] GSR, ECG and RSP 72.93 % 
1500 
Video 
Clips 

Attention- LSTM 

[9]  GSR,EEG 82.92 % DEAP Ensemble Convolution Neural 
Network 

[11] EEG,GSR 73.9 % AMIGOS LSTM-RNN 
[13] EEG, GSR,BVP, EMP & EOG 81.45 % DEAP Short Term Fourier Transform 
[14] EEG and Physiological signals 92.07 % DEAP Convolution Auto- Encoder 

[24] EEG, ECG, EOG 75.19 % Biosensor 
Network 

Reputation-driven Support 
Vector Machine  
(RSVM) 

[40] Physiological signals 70.28 % DEAP LDC and K-NN Cascade 
Architectures 

[43] EEG and Physiological signals 92.87 % DEAP LSTM Networks 

[44] EEG 83.13 % SEED Dual-tree Complex Wavelet 
Transform 

[51] EEG and Physiological signals 87.94 % DEAP DEEP Recurrent Neural 
Network 

 
III. RESEARCH GAPS AND ISSUES 

This section highlights the gaps and issues faced by 
previous emotion recognition methods using different input 
modalities. The research issues of deep learning approaches 
are discussed as follows: 
The method in [2] failed to consider other deep learned 
visual and audio features for enhancing baseline systems 
more effectively. Dynamic modelling of low-level features 
was not investigated using multimodal LSTM for improving 
the recognition rate better [5].The method failed to consider 
other NN for identifying and enhancing the accuracy of the 
audio emotion [15].The method in [43] does not consider 
other modalities, like labor concentration, sleep stages 
analysis, and the driving fatigue for better performance. In 
[35], a real-time multimodal emotion recognition system 
was not considered based on deep learning architecture for 
enhancing classification accuracy. The method in [4] failed 
to include more modalities, such as physio for improving 
the performance of the emotion recognition. More efficient 
features were not identified in [6] for enhancing the 
performance of the system. In [1], the method does not 
investigate eye movement features for better system 
performance. The effective data augmentation method was 
not considered for generating the feature vectors [3].Other 
datasets were not considered in [14] for improving the 
stability of the system. Ensemble recurrent neural network 
was not considered in [9] for identifying the emotions due to 
peripheral physiological and EEG signals being time series 
data. The method [17] failed to consider other fuzzy 
operators in deep recurrent neuro-fuzzy network and deep 
convolutional neuro-fuzzy networks to improve the system 
performance. The method in [47], detects the class 
accurately, but failed to enhance the interaction experience. 
In [49], another advanced score fusion technique, such as 
the logistic regression method, was not included in the 

popular FoCal toolkit for improving the system 
performance. 
These challenges and gaps identified in previous studies 
highlight the need for further research and development in 
the field of emotion recognition using multiple inputs. It is 
necessary to investigate and develop deep learning 
approaches that consider other visual and audio features for 
enhancing baseline systems more effectively, and dynamic 
modelling of low-level features using multimodal LSTM for 
better recognition rates. Additionally, exploring other neural 
network architectures for identifying and enhancing the 
accuracy of the audio emotion can also be helpful. Further 
research should also consider other modalities, such as 
physiological signals and eye movements, for improving the 
performance of emotion recognition systems [18,44,45]. 
It is also important to address challenges in machine 
learning approaches, such as finding appropriate parameters 
and labelling strategies, and testing other classification 
systems based on features to improve the generality and 
discernibility of the system. Moreover, considering 
advanced genetic programming principles and transfer 
learning can also help in enhancing the accuracy and 
generalizability of emotion recognition systems [19,40]. 
In terms of fusion techniques, it is necessary to investigate 
DNN for enhancing the output obtained from textual 
modality and explore end-to-end learning to speed up the 
emotion recognition system performance. Furthermore, 
considering other factors such as elicitation styles, 
languages, and cultural backgrounds can enrich the 
modelling power of the fusion architecture [11,16,31,37]. 
Overall, addressing these challenges and gaps can lead to 
the development of more accurate, efficient, and 
generalizable emotion recognition systems using 
multimodal signals. 
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IV. CONCLUSION 
Overall, this survey provides a comprehensive overview of 
the different techniques used for emotion recognition using 
multiple inputs like Video, EEG and Physiological signals 
and highlights the gaps and issues in current research. The 
analysis of the papers based on feature extraction methods, 
recognition rate, types of data set used and different deep 
learning techniques are applied on video and EEG and 
Physiological inputs. This analysis can be helpful for 
researchers in this field. The identification of the main 
drawbacks and areas for improvement in current research 
can guide future studies towards developing more effective 
emotion recognition strategies. By addressing these gaps 
and issues, it is possible to create more accurate and 
efficient emotion recognition systems that can be applied in 
various fields such as healthcare, education, and 
entertainment. 
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