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ABSTRACTS - Data mining provide decision 

support for intrusion management, and also 

help in Intrusion Detection System (IDS) in 

detecting of new vulnerabilities and intrusions 

by discovering unknown patterns of attacks or 

intrusions. In this paper, we have compared 

four algorithms of Machine Learning models 

which are namely: Naives Bayes (NB), Decision 

trees (J48), Support Vector machines (SVN), 

and Sequential Machine optimization (SMO). 

The realistic models were evaluated and 

compared using data sets as obtained from NSL-

KDDCup. The method takes into consideration 

the relative sizes of the classes to each other in 

the dataset. which allows the user of the IDS to 

evaluate how well they will predict the classes 

given the distribution of the dataset. In addition, 

graphs were plotted in order to efficiently 

analyze the results obtained of the various 

models depicted in Figures. The simulation 

results were obtained using WEKA. The 

simulation parameters were filtered into various 

tables as depicted also in Figures so as to achieve 

a visual conception. Finally, we carried out 

various computational analyses to give us 

semblance of graphical constructions that are 

related to some parameters (time, kappa 

characteristics, ROC etc.) of our experiments 

respectively.  

 

I. INTRODUCTION 

It’s a well-known fact that the evolution of modern 

network computer connectivity through the Internet 

as brought about great security challenge to 

computer network systems. Intrusion Malware by 

codes is becoming a major threat to the usability, 
security and privacy of computer systems and 

networks worldwide. This malicious threats has 

brought a serious concern to commercial, 

industries, and military organizations from 

financial activities and power system operations to 

Internet information communication and aircraft 

reconnaissance and attack activities (Holloway et 
al., 2009). Thus, network security is a very serious 

concern in military environment and other 

enterprises (such as government bodies, academic 

institutions and large corporations). However, 

outsider intrusion detection systems, insider covert 

network detection and system anomaly detection 

techniques are important security tools in Cyber 

space. So many such systems have been proposed 

with the use of standard hierarchical management 

structures with identification of features employing 

classical pattern recognition algorithms. Evolved in 

this detection anomalies are Machine learning 
techniques that range from Naïve Bayes, Decision 

Trees (J48), Support Vector Machine (SVM) and 

Sequential Model optimization (SMO) which is 

thrust of this thesis write-up. 

A. Security Threats and its Impact 

There are many security threats that pose serious 

challenge towards the progress of IT economy. 

Amongst many attacks like Man in the Middle 

Attack, Session Hijacking, Cross site scripting, 

Spamming etc. (Handley, 2004), Malicious 
activities on the Internet is considered to be the 

most deadly weapon (Handley, 2004). In the year 

2009, there were several series of malicious attacks 

that were carried out against the US information 

systems and South Korea IT databases. The attack 

is so powerful from several countries like Canada, 

Japan, Australia and China. In other attacks, many 

government websites were brought down including 

the Federal trade commission and Department of 
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Transport (Liu, 2009). We here–under give 

categorized element of network security as 

addressed: 

 

   B.  Nature of Threats 

Web based insider attack: These are malware 
code written and embedded in javascripts that 

become executable code when excited by innocent 

clients. These web proliferating malware which are 

of various types are called zero-day malware. 

These zero-days are difficult to detect using current 

intrusion detection system (IDS) mechanisms. 

Thus, according to the multitude of internal 

analysis, we are fighting a losing battle against 

those who create malware (Holloway et al., 2009). 

Today, for example, the stealthy worm threat is 

currently under control, the computer virus 

signature types have grown to increasingly 
numbers of polymorphism structural deployment. 

Malware are easily encoded into obfuscated 

malware which cannot be detected by some current 

detectors. In most cases, any computer that is 

connected to the internet is guaranteed to attack 

within 15 minutes; most attacks are effective. As a 

result of this, the malware contemporary effort has 

moved to the client side, embedding exploits in 

web pages and emails (Holloway et al., 2009). 

In order words, border control is no longer 

adequate. Intrusion detection must look both into 
the network traffic and host activity. Therefore any 

kind of defense system should look inwardly into 

the internal threats by identifying it, guarantying it, 

and eliminating the malicious entities involved. 

 

 Denial of Service Attacks: this is a serious 

malicious attack that is worst than worms and virus 

infiltration, the malicious of worms and virus are 

currently examined to be lower than that of DoS 

attack. DoS attacks are mostly effectual; attacking 

computers brought by internal instruction from 

outside targeted network. DoS attack target come 
in various forms such as Trojan Horses. The 

objective of a DoS Malware is to render an 

organization work flow useless with intermittent 

proliferation of the malware packages until the 

server can no longer have any space capacity to 

accept new information by the users. 

Information Exploitation and Corruption: The 
dilapidation of network performance as a result of 

the effects of these threats result in the corruption 

and destruction of information. Malicious agents 

(intruders) exploit and remove confidential 

information from the networks. 

Counter Defense: is a process in which the 

Network security officers establish measures to 

counteract threats. These are achieved through the 
use of system devices called “Intrusion Detectors” 

(IDs); these detectors could alert the network 

administrator of the malware presence in the 

network system of such an organization. 

C. Defensive Network 

Secure Middleware: Defending network attack is 

possible using intrusion detection systems (IDS). 

This IDS is very reliable, In that the detectors allow 

security to be quickly used to detect and report 

back incident. Thus, IDS is a middleware which 

forms a computing system that all user of computer 

network interact with, in detecting malware. For 

instance, in detecting anomalies, Aircraft has 

developed middleware called Cyber craft (Karrels 

et al., 2007). 

Malware (Malicious Software): 

They are software designed purposely to cause 

damage or discomfort in computer operations. 

Malware is also defined as software designed to 
infiltrate or damage a computer system without the 

owner’s informed consent (Mihai et al., 2005). 

Malware includes viruses, worms, Trojans, adware 

and spyware. One common feature amongst these 

codes is their ability to install themselves on your 

machine without your approval. Effects of malware 

can range from unnoticeable to annoying to install 

mental wreckage and steal important documents.  

 Viruses 
Viruses are malicious software programs that are 

designed to cause disorder to legitimate programs. 

These viruses spread using a host from one 

computer to another and to interfere with computer 

operation. A virus might corrupt or delete data on 

your computer, use your e-mail program to spread 

itself to other computers, or even erase everything 

on your hard disk (Mihai et al., 2005).  

 

 Worm  
Worms are another variant of malicious software 

programs that are self-replicate computer program. 

It uses a network to send copies of itself to other 

computers on the network and it may do so without 

any user intervention. Worms usually exploit a 

known or zero-day vulnerability that allows them 

to execute their copies on computers on the same 

network (Mihai et al., 2005). 

 

 Trojan Horse  

A Trojan horse is non-self-replicating malware that 
appears to perform a desirable function for the user 

but instead facilitates unauthorized access to the 

user's computer system. Nowadays, they are 

usually dropped as payloads by computer worms in 

order to give the attacker total control of the 

victim's PC (Mihai et al., 2005). 
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 Backdoor  

As their name implies, backdoor software allows 

an attacker to access a machine using an alternative 

entry method. Normal users log in through front 

doors, such as login screens with user IDs and 

passwords. Attackers use backdoors to bypass these 
normal system security controls that act as the front 

door and its associated locks. Once attackers install 

a backdoor on a machine, they can access the 

system without using the passwords, encryption, 

and account structure associated with normal users 

of the machine (Mihai et al., 2005). 

 

 Rootkit  

A rootkit is a software system that consists of one 

or more programs designed to obscure the fact that 

a system has been compromised. An attacker may 
use a rootkit to replace vital system files, which 

may then be used to hid processes and files the 

attacker has installed. Rootkits often modify parts 

of the operating system or install themselves as 

drivers or kernel modules, depending on the 

internal details of an operating system's 

mechanisms. Kernel rootkits can be especially 

difficult to detect and remove because they operate 

at the same level as the operating system itself and 

are thus able to intercept or subvert any operation 

made by the operating system. Any software such 

as antivirus software, running on the compromised 
system is equally easily subverted. The 

fundamental problem with rootkit detection is that 

if the operating system currently running has been 

subverted, it cannot be trusted, including to find 

unauthorized modifications to itself or its 

components (Mihai et al., 2005).  

 

 Spyware  

Spyware sneaks into your computer without your 

permission. It extract the personal information or 

details from the computers. This information is sent 
to specific locations without permission of owner 

which can be very dangerous. The attacker uses the 

spywares to steal the personal information of users 

like password or credit card number (Mihai et al., 

2005). 

 

 Adware  

Adware usually try to sell something to the users 

which automatically appear as pop up window even 

if users don’t open these. Normally this program 

comes to the systems in the form of the gambling 

advertisements and these advertisements are related 
to the websites which you open. There will many 

windows open and users will not be able to close 

these windows in case of adware attack (Mihai et 

al., 2005). 

 

 

2.2   Related work 

The first person to introduce Intrusion detection 

concept was James Anderson in 1980. To him, he 

see intrusion attempt or threat to be potential 

possibility of  a deliberate unauthorized attempt to 

access information, manipulate or render a system 

unreliable or unusable (Anderson.J.P, 1980). In the 
latter part of 1990, data mining consisting of NIDS 

began to gain more attraction. Researchers 

suddenly recognized the need for existence of 

standardized dataset to train IDS tool. Minnesota 

Intrusion Detection System (MINDS) combines 

signature based tool with data mining for anomaly 

detection. In an early study applying GAs to 

intrusion detection, emphasise were based on being 

able to continuously learn user behaviour, to keep 

track of user drift (Balajinath and Raghavan, 2001). 

Similarly to (Balajinath and Raghavan, Neri, 2000) 

adopts a distributed GA, REGAL (Giordana and 
Neri 1995), to determine patterns of normal 

network behaviour. (Leon et al., 2004a, 2004b) 

demonstrate the potential of GAs to perform 

network based anomaly detection by means of 

clustering, which they achieve by incorporating a 

niching mechanism. Furthermore, Bankovi´c et al. 

2008, proposed a GA over other clustering 

algorithms, to obtain more robustness, reduce the 

problem of ‘getting stuck’ in local optima and to 

exploit the parallel nature of the algorithm. They 

utilize the clustering potential of the GA to perform 
unsupervised, network based, anomaly detection. 

The approach does not require a predefined number 

of clusters, such as the popular k-means algorithm, 

and new data that is introduced to the cluster model 

does not need to be assigned to existing clusters; 

instead, new clusters may be created, thus, giving 

more flexibility. In a different application, by (Lin 

and Wang 2008), a GA is hybridised with k-means 

clustering, which allows for the value of k to be 

optimised. There are several applications of ACO 

based clustering to intrusion detection. Ramos and 

Abraham, 2004, apply an unsupervised ant 
clustering model, referred to as ACLUSTER, to 

network based intrusion detection. They argue that 

it is a desirable approach in this domain as the 

parallel and distributed nature of the ant model 

offers real time online training, and there is no need 

for complete retraining. The same benefits are 

argued by (Feng et al., 2006), who propose ACO 

clustering as a part of an agent system. Other 

benefits of their system include that it facilitates 

unsupervised and supervised learning, and that it is 

self organising. (Feng et al., 2007) later propose a 
new ACO based clustering system, hybridised with 

a SOM for network based anomaly detection. In 

addition Tsang (2005.) improve on an existing ant 

clustering model by (Lumer and Faieta 1994), to 

better deal with high dimensional data. They adopt 

the KDD Cup ’99 data to evaluate the performance 

of their ant clustering model, and compare with k-
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means clustering, SOM, another ant based 

clustering technique, and a multiple classifier (from 

other studies). Their algorithm obtained the highest 

detection rates on R2L and DoS, and second best 

for U2R, Probing and Normal. The ACO clustering 

system proposed by (Feng et al., 2006), as 
mentioned above, was also validated on a small 

subset of the KDD Cup ’99 data set, and 

outperformed a DT, SVM, LGP (Linear Genetic 

Programming), and k-NN. There are several studies 

that demonstrate the success of GP for intrusion 

detection. (Abraham et al., 2007) and (Hansen et 

al., 2007) have both obtained high detection rates 

on the KDD Cup ’99 data set. However, both 

studies used small subsets of the data, which 

prevents direct comparisons with other studies 

adopting the full data set. (Abraham et al., 2007) 

examined three types of GP algorithms: Linear 
Genetic Programming (LGP), Multi-Expression 

Programming (MEP), and Gene Expression 

Programming (GEP). They found that the different 

algorithms obtained better detection rates on 

certain classes. For example, MEP obtained the 

highest detection rates on U2R and R2L, whilst 

LGP detected Probing and DoS intrusions with 

higher accuracy. Similarly, (Alan Bivens et al., 

2002) invented an NIDS using classifying self 

organizing maps for data clustering. MLP neural 

network is an efficient way of creating uniform, 
grouped input for detection when a dynamic 

number of inputs are present. An ensemble 

approach (Srinivas Mukkamala et al., 2004) help to 

indirectly combine the synergistic & 

complementary features of the different learning 

paradigms without any complex hybridization.  The 

ensemble approach outperforms both SVMs, 

MARs, & ANNs. SVMs outperform MARs & 

ANN in respect of Scalability, training time 

running time & prediction accuracy. 

D. Malware Based JavaScript 

This document is an example of malware codes 

infused in an HTML structure highlighted in color. 

 
Fig 1. example of malware codes infused in an 

HTML 

 

From figure 1 above, Note the bottom image, 

which claims that the site is “powered by” 123 

greetings.com, What one can’t tell from Fiigure 1’s 

static screen capture is that the image at the top of 

the page flashes the red border and red “x” icon as 

an animated .gif image, in an annoying throbbing 

look. Clicking on the image or on the “click here” 

text link would download two different executable 

files. 
Unseen to the naked eye is an invisible <iframe> 

element that runs a ton of Javascript whose goal is 

to load additional software onto a vulnerable PC. 

The iframe element delivers a classic “drive-by” 

attack, so-called because all actions occur just by 

visiting the page, requiring no further action by the 

victim. 

II.  METHODOLOGY 

This research comparers the different algorithms of 

some machine learning on Intrusion Detection 

Systems. The Algorithms are: Naïve Bayes, 

Decision Trees (J48), Support Vector Machine 

(SVM) and Sequential Model Optimization (SMO). 

In view of this assertion, we here give the 

theoretical exposition of each model. In the design 

stage of this Project, we are going to highlight the 

theories of the four (4) Data mining algorithms we 

are going to deploy or run on the WEKA software. 

A.  A Pretty Conception of the Naives Bayes 

The naïve Bayesian classifier is based on Bayes 

theorem, and is a relatively simple algorithm for 

machine learning. The Bayesian classifier has 

proved itself, and according to research it has 

performed in line with decision tree and neural 

network classifiers. The Bayesian classifier 

demands a lot of training data in order to be 

effective in classification of real data. In Bayes 
classification, the probability of a given hypothesis 

is calculated to be true given that the Data belong 

to a certain class. This method scans through the 

dataset the collected dataset and then re-scans as 

the case may be in order to re-calculate the 

probability to be more or less. It is strictly the work 

of an uncertainty as it relates to their Domains. 

Let us take for an example an attacker aiming at a 

particular enterprise network domain, such an 

attacker will either have a positive action when he 

gets the target or negative when he failed to 
succeed. Here two variables are established: 

positive when he hits the target or negative when 

he misses it. 

 

B.     The Naïve Bayes Model 

The Naïve Bayes method is based on the work of 

Thomas Bayes (1702-1761). In Bayesian 

classification, we have a hypothesis that the given 

data belongs to a particular class. We then calculate 

the probability for the hypothesis to be true. This is 

among the most practical approaches for certain 

types of problems. The approach requires only one 
scan of the whole data. Also, if at some stage there 
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are additional training data, then each training 

example can incrementally increase/decrease the 

probability that a hypothesis is correct. Thus, a 

Bayesian network is used to model a domain 

containing uncertainty 

Naïve Bayes is a form of Bayesian model in its 
simplistic form. It considers the probability of an 

end result given a set of evidences or variables 

independently given the end results. Network 

Intrusion Design may be liken to an Alarm. 

Assume that we have a set of examples that 

monitor some attributes such as whether it is 

raining, whether an earthquake has occurred etc. 

Let us also assume that we know, using the 

monitor, about the behavior of the alarm under 

these conditions. In addition, having knowledge of 

these attributes, we record whether or not a theft 

actually occurred. We will consider the category of 
whether a theft occurred or not as the class for the 

naïve Bayes classifier. This is the knowledge that 

we are interested in. The other attributes will be 

considered as knowledge that may give us evidence 

that the theft has occurred (Mrutyunjaya Panda and 

Manas Ranjan Patra, 2007). 

A more detail of Car theft scenario can be given 

below as enumerated by (Christina Lee, 2007): 

Now we will consider an example. Suppose that a 

hypothetical car alarm that responds correctly 99% 

of the time. The other 1% is divided into two 
categories, false positives, and false negatives. 

False positives make up all the situations in which 

the car alarm goes off, but where there is no 

criminal activity occurring. Assume that 1% of the 

time that the alarm rings, that this is the case. False 

negatives make up all of the situations in which the 

car alarm does not go off, but there is an attempted 

theft. Assume that this event also makes up 1% of 

all cases in which the alarm does not go off. Now, 

assume that the probability of criminal activity 

occurring with this particular car to be 1% in any 

given hour. Over a period of 1 hour, the car is left 
unsupervised. The alarm goes off once in this time–

what is the probability that a theft occurred when 

the alarm went off? What is the probability that a 

theft did not occur when the alarm went off? 

One way to approach this problem is to use the 

concept of natural frequencies. Natural frequencies 

translate the probability into concrete whole 

numbers before transferring them back into 

probabilities. For example, a probability that a fair 

coin gives heads can be thought of as the idea that 

out of 1000 cases, 500 will be heads.  
Examining the car burglary case, we know that the 

probability that a theft occurred is 1% in any hour. 

Therefore, in considering the natural frequency, we 

can assume that over a period of 10,000 hours, 100 

hours will have thefts (since there is a 1% 

probability for theft in any hour). This period of 

10,000 hours can therefore be divided into two 

categories: those that have thefts, and those that do 

not. The number of hours having thefts, as stated 

earlier is 100. The number of hours not having 

thefts is 9,900. Therefore, in the number of hours 

having thefts, 100, the car alarm will, on average, 

go off 99 times. The other 1 time it will not go off. 
In the 9,900 hours in which no thefts occur, the 

alarm will go off 99 times. 9,801 times, it will not 

go off. Therefore, the total number of hours with 

alarms is 198. The total number of hours without 

alarms is 9,802. So the probability that a theft 

occurred when the alarm went off is 99/198, or 

50%. The probability that a theft did not occur 

given that the alarm went off is 99/198, also 50%. 

Note that despite the fact that the false negatives 

only occur 1% of the time, the alarm is nonetheless 

incorrect 50% of the time that it goes off due to the 

fact that thefts occur much less commonly than 
non-thefts. 

The above problem can also be expressed as 

follows: 

Let P(correct) = .98 

Let P(alarm|event) = P(falsepos) = .01 

Let P(alarm|event) = P(falseneg) = .01 

Let P(event) = .01 

Therefore, 

P(correct|event) = P(falseneg) = .99 

P(alarm) = 

P(correct|event)×P(event)+P(falsepos)×P(event) = 
.99×.01+.01×.99 = .0099+.0099 = 

.0198 

P(alarm|event) = P(falsepos) = P(alarm|event) = .99 

P(event|alarm) = P(alarm|event)×P(event) 

P(alarm) = .99×.01 

.0198 = .0099 

.0198 = .5 (using Bayes’s rule) 

P(event|alarm) = P(alarm|event)×P(event) 

P(alarm) = .01×.99 

.0198 = .5 (using Bayes’s rule) (Christina Lee; 

2007) 

As can be seen from the above example, the 
number of false positives must be reduced to 

significantly to prevent the alarm from becoming 

more annoying than helpful. 

The naïve Bayes classifier works with assumptions. 

These further explain why the Probability of one 

attribute does not have any effect on the probability 

of the other. Given a series of n attributes, the naïve 

Bayes classifier makes 2n! Independent 

assumptions. Nevertheless, the results of the naïve 

Bayes classifier are often correct. (P. Domingos, 

and M. J. Pizzani, 1997) examines the 
circumstances under which the naïve bayes 

classifier performs well and why. It states that the 

error is as a result of three factors: training data 

noise, bias and variance. Training data noise can 

only be minimized by choosing good training data. 

The training data must be divided into various 

groups by the machine learning algorithm. Bias is 
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the error due to groupings in the training data being 

very large. Variance is the error due to those 

groupings being too small. nIn the training phase, 

the naïve bayes algorithm Compute the 

probabilities of a theft given a particular attribute 

and then stores this probability. This is repeated for 
each attribute. In the testing phase, the amount of 

time taken to calculate the probability of the given 

class for each example, in the worst case is 

proportional to n, the number of attributes. 

However, in worst case, the time taken for testing 

phase is same as that for the training phase. Figure 

3.1 below shows the framework for a Naïve 

Bayesian model to perform intrusion detection. 

 

 

 

 
 

 

 

 

 

Fig. 2 the Framework of An Intrusion Detection 

Model 

Bayes networks are among the most widely used 

graphical models to represent and handle uncertain 

information. They are specified by two main 

components: 

A graphical component composed of a directed 

acyclic graph (DAG) where vertices represent 

events and edges are relations between events. 

A numerical component is consisting of different 

links in the DAG by a conditional probability 

distribution of each node in the context of its 

parents.    

As simple as Naïve Bayes networks, they are 

consisting of DAGs with only one root node which 

is called a Parent. The Parent represents the 

unobserved node with her several Children 

corresponding to observed nodes, with strong 

assumption of independence among Child nodes in 

the context of their parent. This thus means in the 

presence of training set we can only compute the 
conditional probabilities since the structure is 

unique. 

Once the network is quantified, it is possible to 

classify any new object giving its attributes’ values 

using the bayes’ rule express as: 

(P Ci/A) = 3.1 

Where Ci is a possible value in the session class and 

A is the total evidence on attributes the nodes. The 

evidence A can be distributed into pieces of 

evidence, for example a1, a2… an relative to the 

attributes A1, A2, ……., An, respectively. Since 

naïve baye’s work under the assumption that these 

attributes are independent giving the parent node c, 

their combine probability is obtained as follows: 

(P Ci/A)=

  

3.2 

Note that there is no need to explicitly compute the 

denominator P(A) since it is determine by 

normalization condition. 

C.    Decision Trees. 

Decision trees are Machine learning algorithm 

which comprise of three major elements or 

components. These components are as stated below 

(G.V Nadiammai, 2003): 

1. Decision node which specify a test 
attribute  

2. Edge or a branch, corresponding to the 

one of the possible attributes values with 

the best attributes outcomes. 

3. Leaf, which is also known as an answer 

node contains the class to which the object 

belongs. 

A decision tree is built in two phases: 

1. Building the tree: Based on a given 

training set, a decision tree is built. It 

consists of selecting for each decision 

node the appropriate test attribute and also 

to define the class labeling each leaf. 

2. The second one is classification, which is 

done in order to classify a new instance. In 

order to actualize this, we begin by the 
root of the decision tree, after which we 

test the attribute specified by the node. 

The result is allowed to move down the 

tree branch relative to the attribute value 

of the given instance. It is then allow to be 

repeated until a leaf is located. The 

instance is then classified in the same 

class as the characterized Leaf. 

ID3 and and C4.5 algorithms (Quinlan, J.R, 1993) 

where among the earliest and popular work in the 

construction of decision trees and it well known 

applications in the classification world. These 

algorithms were use to built a model from the root 

Dataset 

Pattern Building 

Detector 

Alerts 

Network Traffic 

Pre-processing 



             International Journal of Engineering Applied Sciences and Technology, 2020    

                                     Vol. 5, Issue 6, ISSN No. 2455-2143, Pages 85-110 
                         Published Online October 2020 in IJEAST (http://www.ijeast.com)                                                                                                                                                                                                                                                                                                                                                                                                                    

91 

 

to the Leaves through the use of the following 

parameters: 

The attribute selection measure use the 

discriminative of each attribute over classes in 

order to choose the best as the root of the decision 

tree. In order words, this measure should consider 

the ability of each attribute, Ak to determine 

training objects’ classes. Based on the gain ratio 

(Quinlan, J.R, 1993) and the Shannon entropy; an 

Attribute Ak and a set of objects T is define as 

follows: 

Gain(T,Ak)=Info(T)–InfoAk(T)    3.3                                        

where 

Info(T)=-  3.4 

Info Ak (T) = 

   3.5 

And  denotes the number of objects 

in the set T belonging to the class Ci and TAk
ak  is 

the subset of the objects for which the attribute Ak 

has the value ak (belonging to the domain of Ak 

Denoted D(Ak)). 

Then split Info (Ak) is define as the information 

content of the attribute Ak as in (Quinlan, J.R, 
1993): 

Split Info(T,Ak) = 

 -    3.6 

So, the gain ratio is the information gain calibrated 

by split Info: 

Gainratio(T,Ak)=    3.7                                      

The partitioning strategy having as objective to 

divide the current training set by taking into 

account the selected test attribute. The stopping 

criteria, dealing with the condition (s) of stopping 

the growth of a part of the decision tree or even all 

the decision tree. In other words, they determine 

whether or not a training subset will be further 

divided.  

 

D.          Support Vector Machines (SVM) 

Several extensions have been proposed to make 
SVMs suitable to deal with multi-class 

classification problems. Although none of the 

multi-class approaches known in the literature is 

accepted as a solution to generic problems, SVMs 

techniques are nowadays mature enough to be 

applicable to many classification problems (Chen 

et al., 2005). 

The SVM approach transforms data into a feature 

space F that usually has a huge dimension. It is 

interesting to note that SVM generalization 

depends on the geometrical characteristics of the 

training data, not on the dimensions of the input 
space. Training a support vector machine leads to a 

quadratic optimization. Problem with bound 

constraints and one linear equality constraint. 

Vapnik (Joachims, 1998) shows how training a 

SVM for the pattern recognition problem leads to 

the following quadratic optimization problem 

(Buntod et al., 2010): 

Minimize:
 

W(a)=-   3.8 

Subject to  

                  3.9                                                                           

Where: 

l = the number of training examples 

a = A vector of l variables and each component i a 

corresponds to a training example (x i , y i ) 

The solution of (1) is the vector a* for which (1) is 
minimized and (2) is fulfilled. 

Intrusion detection using support vector machines 

are being researched in universities (Harley 

Kozushko, 2003). The construction of SVM 

intrusion detection systems consists of three 

phases. The first is preprocessing, which uses 

automated parsers to process the randomly selected 

raw TCP/IP dump data into machine readable form. 

The second phase consists of training SVMs on 

different types of attacks and normal data. The data 

have 42 input features and fall into two categories: 

normal (+1) or attack (-1). The SVMs are trained 
with normal and intrusive data. The final phase 

involves measuring the performance on the testing 

data. In theory, SVMs are learning machines that 

plot the training vectors in high dimensional feature 

space, labeling each vector by class. Furthermore, 

SVMs classify data by determining a set of support 

vectors, which are members of the set of training 

inputs that outline a hyper plane in feature space. 

The SVMs are based on the concept of structural 

risk minimization, which recognizes true error on 

unseen examples. The process to which the data is 
classified involves partitioning the data into two 

classes: normal and attack, where attack represents 
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a collection of 22 different attacks belonging to the 

four classes, either: DOS attacks, unauthorized 

access from a remote machine, unauthorized access 

to a local super user privileges, or surveillance and 

other probing. The object is to separate normal (1) 

and intrusive (-1) patterns. The SVMs are trained 
with normal and intrusive data. 

The primary advantage of SVMs is binary 

classification and regression which implies low 

expected probability of generalization errors; 

however there are many more advantages. Another 

advantage is speed as real-time performance is of 

primary importance to intrusion detection systems. 

In addition, the SVMs are very scalable. They are 

relatively insensitive to the number of data points 

and the classification complexity does not depend 

on the dimensionality of feature space. A final 

advantage is that because attack patterns are 
dynamic in nature, SVM can dynamically update 

training patterns. 

 

E.   Support Vector Classifier Algorithm using 

Sequential Minimal Optimization (SMO) 

 

The math model of support vector classifier can be 

considered as a quadratic problem with some 

constraints. Traditional algorithms always involve 

matrix operation so, the expenses of saving and 

computing are large; especially the large scale data 
sets (C. J. C. Burges, 1998). The data sets we chose 

for our intrusion detection experiments are large, so 

after analysis and comparison we choose 

Sequential Minimal Optimization (SMO) algorithm 

as one of the Algorithm used. It was brought up by 

Platt in 1998. Its foundation is aimed to decompose 

a large quadratic problem to a serial of minimal 

quadratic problems. 

The SMO algorithm is derived by taking the idea of 

the decomposition method to its extreme and 

optimizing a minimal subset of just two points at 

each iteration. The power of this technique resides 
in the fact that the optimization problem for two 

data points admits an analytical solution, 

eliminating the need to use an iterative quadratic 

programme optimizer as part of the algorithm  

(Nello Cristianini, John Shawe-Taylor, 2005). 

The requirement that the condition 

 is enforced throughout the 

iterations implies that the smallest number of 
multipliers that can be optimized at each step is 2: 

whenever one multiplier is updated, at least one 

other multiplier needs to be adjusted in order to 

keep the condition true. 

At each step SMO chooses two elements αi and αj 

to jointly optimize, finds the optimal values for 

those two parameters given that all the others are 

fixed, and updates the α vector accordingly. The 

choice of the two points is determined by a 

heuristic, while the optimization of the two 

multipliers is performed analytically. Despite 

needing more iteration to converge, each iteration 

uses so few operations that the algorithm exhibits 

an overall speed-up of some orders of magnitude. 

Besides convergence time, other important features 
of the algorithm are that it does not need to store 

the kernel matrix in memory, since no matrix 

operations are involved, that it does not use other 

packages, and that it is fairly easy to implement. 

Notice that since standard SMO does not use a 

cached kernel matrix, its introduction could be used 

to obtain a further speed-up, at the expense of 

increased space complexity. 

 

1.     Population of the Study 

In our work, the KDDCUP 99 was downloaded and 

filtered according to the type of Attacks as shown 

in the Table and figure. The KDDCUP’99 is about 

1,048,575 connections which make it very bulky; 

to this end we again relied on the refined Dataset 

by (Mahbod Tavallaee et al., 2009) and posted on 

the website http://nsl.cs.unb.ca/NSL-KDD on 

March 2009. The website contains the following 

Datasets: 11850 connections representing 21% of 
test data, 22544 connections representing the whole 

of test data, 125973 connections of train data set 

and 25192 representing 20% train data. We carry 

out the experiments on the train and test data using 

four Data mining algorithms on Weka software. 

 

2.      Sampling Procedure 

The Datasets taken from section 3.3 above were 
prepared and ran on WEKA software. For each of 

train or test dataset we conducted a four (4) data 

mining algorithms on it. When we ran each of the 

algorithms, a collected the output on our System is 

done and on the same Machine we again collect the 

ROC graphs for proper analysis. 

 

3.       Instrumentation 

In order to perform this experiment we use the 

WEKA (Waikato environment for knowledge 

analysis). This software train the data collected 
from the KDDCup ’99 after which the information 

obtained from the training was analyzed with the 

use of MALAP9.0. The experiment was carried out 

with the use of a windows XP service pack 3 

Operating System Software running on an Intel ® 

Core™2 duo processor CPU T7100 1.8 GHz 2.0 

GB of RAM. 

 

III. DATA COLLECTION PROCEDURE 

A.     KDDCup ’99 Data Collection 

Network Attacks has become a major phenomenon 

in the field of computing and Information 
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Technology. Security has virtually become a 

confidential issue for any organization and as such 

Organizations conceal this piece information as 

classified. Since it is very difficult getting Attack 

information of any organize enterprise network, we 

strictly and wholly relied on the available samples 
collected by NSL- KDD. Before NSL KDD data 

set most of the investigators or researchers used 

KDD’99 data set for the investigation or detection 

of the intrusion, but the outcome of the KDD’99 

data could not satisfy to the investigator or 

researchers. There are many problems in KDD’99 

data set which has overcome by NSL KDD data set 

(Mahbod Tavallaee et al., 2009). The NSL-KDD 

data set has the following advantages over the 

original KDD data set: 

1. NSL KDD data set does not include redundant 

records in the train set, so the classifiers will not be 
biased towards more frequent records. 

2. There are no duplicate records in the proposed 

test sets; therefore, the performance of the learners 

is not biased by the methods which have better 

detection rates on the frequent records 

3. The number of selected records from each 

difficulty level group is inversely proportional to 

the percentage of records in the original KDD data 

set. As a result, the classification rates of distinct 

machine learning methods vary in a wider range, 

which makes it more efficient to have an accurate 
evaluation of different learning techniques. 

4. The number of records in the train and test sets is 

reasonable, which makes it affordable to run the 

experiments on the complete set without the need 

to randomly select a small portion. Consequently, 

evaluation results of different research works will 

be consistent and comparable 

The website (http://nsl.cs.unb.ca/NSL-KDD) 

contains the following Datasets: 11,850 

connections representing 21% of test data, 22544 

connections representing the whole of test data, 

125,973 connections of train data set and 25,192 
representing 20% train data. A connection is a 

sequence of TCP packets starting and ending at 

some well defined times, between source IP 

address to a target IP address with some well 

defined protocol. Each connection is categorized as 

normal, or as an attack, with one specific attack 

type. The training dataset is classified into five 

subsets namely Denial of service attack, Remote 

to Local attack, User to Root attack, Probe 

attacks and normal data. Each record is 

categorized as normal or attack, with exactly one 
particular attack type. 

 

B.       Weka program data collection 

 

WEKA is open source software that was developed 

using Java at Waikato University and it is available 

on the website 

“http://www.cs.waikato.ac.nz/ml/weka/.” 

For each machine learning algorithm, the algorithm 

was always trained with the training data, and 

testing was performed with either the testing data 

or the training data. In addition, the option to 
output detailed statistics was selected and to output 

the model. The model consists of all the 

information necessary to reproduce the trained 

machine learning data structure (e.g. the decision 

tree, naive bayes, SMO or SVM trained on the 20% 

dataset). The option -Xmx1024m was used to 

increase the memory available to the JRE to 1024 

MB for SVM and SMO. Naive Bayes algorithm 

outputs the results of training and testing, as well as 

the model for the naive Bayes. Besides the options 

mentioned above, the Weka naive Bayes and J48 

decision tree algorithms were run using the 
defaults, and no other options were selected for 

them. 

 

C.          Data Analysis Techniques. 

The data files used are from the University of 

California, Irvine Knowledge Discovery and Data 

Mining (UCI KDD) website 

(http://www.kdd.ics.uci.edu/databases/kddcup99/ta

sk.html) as amended by (Mahbod Tavallaee et al., 

2009). The data files give the necessary 

information to create and train the algorithms. The 
kddcup names file lists the class types, including 

’normal.’ which signifies that no attack is in 

progress. The attack types are back, buffer_ 

overflow, ftp_write, guess_passwd, imap, ipsweep, 

land, loadmodule, multihop, neptune, nmap, 

normal, perl, phf, pod, portsweep, rootkit, satan, 

smurf, spy, teardrop, warezclient, and warezmaster. 

In the test data, the attacks mentioned above are 

present with other novel attacks, which include: 

xsnoop, xterm, Apache2, httptunnel, mailbomb, 

mscan, named, processtable, ps, saint, sendmail, 

snmpgetattack, snmpguess, sqlattack, udpstorm, 
worm and xlock. Table 3.1 shows the four classes 

of attacks and the different classifications they 

belong to. 

 

While there are a large variety of attacks, most of 

these attacks above fit into one of four categories 

(Christina Lee, 2007): 

 

 

 

 
 

 

 

 

 

 

 

http://www.kdd.ics.uci.edu/databases/kddcup99/task.html
http://www.kdd.ics.uci.edu/databases/kddcup99/task.html
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Table 1. Different types of Attacks and their 

classes 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

It is important 
to note that the test data is not from the same 

probability distribution as the training data, and it 

includes specific attack types not in the training 

data which make the task more realistic. Some 

intrusion experts believe that most novel attacks are 

variants of known attacks and the signature of 

known attacks can be sufficient to catch novel 

variants (Mahbod Tavallaee et al., 2009) 

The names file also lists the attribute names. Each 

attribute name states whether it is a continuous or 

symbolic variable. A symbolic variable has a finite 
number of possible values and can be completely 

enumerated. A continuous variable cannot be 

enumerated. 

Each example uses forty-one attributes, and the 

testing data contains 23 different classes. The 

attributes are as given in table 3.2 to 3.4 

Table 2: Basic Features of individual TCP connections 
feature name Description Type 

duration  length (number of seconds) of the 
connection  

Continuous 

protocol type type of protocol, e.g. tcp, udp, etc Symbolic 

service network service on the 
destination, e.g., http, telnet, etc. 

Symbolic 

flag normal or error status of the 
connection 

Symbolic 

src_bytes number of data bytes from source 

to destination 

Continuous 

dst_bytes number of data bytes from 
destination to source 

Continuous 

land 1 if connection is from/to the 
same host/port; 0 otherwise 

Symbolic 

wrong_fragment number of “wrong” fragments Continuous 

urgent number of urgent packets Continuous 

 

Table 3: Content features suggested by domain 
knowledge 

feature name Description 

hot number of “hot” indicators 

num_failed_logins number of failed login attempts 

logged_in 1 if successfully loggin in, 0 otherwise 

num_compromised number of “compromised” conditions 

root_shell 1 if root shell obtained, 0 otherwise 

su_attempted 1 if “su root” command attempted, 0 otherwise 

num_root number of “root” accesses 

num_file_creations number file creation operations 

num_shells number of shell prompts 

num_access_files number of operations on access control files 

num_outbound_cmds number of outbound commands in an ftp session 

is_hot_login 1 if the login belongs to the “hot” list, 0 otherwise 

is_guest login 1 if the login is a “guest” login, 0 otherwise 

 

Table 4: A two-second window where various 

traffic features were computed 
feature name Description Type 

count # of connections to the same host as 

this one in the past two seconds 

Continuous 

 Note: the following features refer to 

these same-host connections 

 

serror_rate % of connections that have “SYN” 

errors 

Continuous 

rerror_rate % of connections that have “REJ” 

errors 

Continuous 

same_srv_rate % of connections to the same 

service 

Continuous 

diff_srv_rate % connections to different services Continuous 

srv_count # of connections to the same service 

as this one in the past two seconds 

Continuous 

 Note: The following features refer 

to these same-service connections 

 

srv_serror_rate % of connections that have “SYN” 

errors 

Continuous 

srv_rerror_rate % of connections that have “REJ” 

errors 

Continuous 

srv_diff_host_rate % of connections to different hosts Continuous 

 
The NSL –KDDCup’2009 data file lists the value 

of the class and the value of the attributes. The 

testing data set contains 22,543 examples. These 

examples contain 9,711 normal items and 12,832 

attacks. Therefore, this data is most likely atypical 

Attack Class(4 

main Classes) 

Different Attacks (22 

misused attacks) 

Denial of 

Service(DOS) 

back, land, neptune, 

pod, smurt, teardrop 

Remote to 

Local(R2L) 

ftp_write, 

guess_passwd, imap, 

multihop, phf, spy, 

warezclient, 

warezmaster 

User to 

Root(U2R) 

buffer_overflow, perl, 

loadmodule, rootkit 

Probe ipsweep, nmap, 

portsweep, satan 
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because it contains more attacks than normal data. 

The attack connections make up 56.92% of the 

dataset. The training dataset contains 125,972 

items. There are 67,342 normal connections and 

58,630 attack connections. The attacks make up 

46.54% of the dataset. All the datasets has 41 
attributes. Fig 4.18 shows the datasheet containing 

this analysis. 

For the Weka algorithms, the dataset was converted 

to arff format, which is a standard data mining 

format used by Weka. This was accomplished by 

first converting the file to csv format using 

Microsoft excel, The CSV format is a standard 

comma-separated format. The version of the csv 

format read by WEKA has a row of entries at the 

top that lists the name of each attribute. In this step, 

a line with the feature names as given above was 

added, along with the classification name. Then the 
lines were processed using only the classes 

’normal’ and ’anomaly’ (i.e. any class that wasn’t 

normal was changed to read ’anomaly’). Next, the 

Weka CSVLoader was used to convert both the 

training and the testing dataset (now in csv format) 

to arff format. The two arff headers were manually 

compared and merged to form a single arff header 

with all the possible attribute values from both the 

testing and the training phase (Weka requires that 

the arff headers for the testing and training data 

match). 

D. Neural Network Java Codes 

Implementation for Intrusion Detection. 

This work is strictly on the application of WEKA 

for comparison of the IDS algorithms. However, 

we are obliged to give a simple and workable code 

program in Java that could be applied in for any 

IDS using the neural networks, thus, code is given 

in Appendix A. 

he Methods are based on the following machine 

and data mining algorithms models: using WEKA 

software 

1.  Naïve Bayesian,                  2. 

 Support Vector Machines (SVM)      

3.  Decision Trees (J48) and      4. 

 Sequential Minimal Optimization (SMO). 

E.     Research Questions 

The question we will answer in this study is; which 

is the best data mining or Machine learning 

Techniques among the four to be studied for the 
detection of the intrusion, such as: 

1. Denial of Service (DoS),         2.  Remote to 

Local (R2L), 

3. User to Root (U2R) and         4.  Probe ?  

The question will be answered in terms of 

performance, efficiency and scalability in order to 

make an appropriate conclusion in chapter five. 

Network Intrusion Detection System: is a 

specialized tool that knows how to read and 

interpret the contents of log files from routers, 

firewalls, servers, and other network devices so as 

to compare patterns of activity, traffic, or behavior 

to indentify and separate the normal from the 

unauthorized traffic. 

Intrusion Prevention System: is a tool deployed 

to preventing or averting the unauthorized traffic 

into any Computer System or Network. 

Data Mining: is defined as the process of 

discovering patterns in data. The process must be 

automatic or (more usually) semiautomatic. The 

patterns discovered must be meaningful in that they 

lead to some advantage, usually an economic one. 

Machine Learning: is the prediction, based on 

known properties learned from the training data or 

is a scientific discipline concerned with the design 

and allow computers to evolve behaviors based on 

empirical data such as from sensor data or 

database. 

False positive: is when you have a specific 

vulnerability in your program but in fact you don’t 

or when an IDS sound an alarm signifying 

intrusion but in really there is no any intrusion. 

True positive: when an IDS sound an alarm when 
really there is an unauthorized traffic in the 

network or System. 

Receiver Operating Characteristic (ROC): 
curves identify how the true positives vary with the 

false positives. ROC curves show how well a test 

does at distinguishing between classes without 

taking the relative frequency of the classes into 

account. 

Support Vector Machines (SVM): transforms 

data into a feature space F that usually has a huge 

dimension. The algorithms generalization depends 

on the geometrical characteristics of the training 

data, not on the dimensions of the input space. 

Sequential Minimal Optimization (SMO) is 

aimed to decompose a large quadratic problem to a 

serial of minimal quadratic problems. 

IV. RESULTS AND DISCUSSIONS 

A. Introduction 

This works compares four algorithms of Machine 

Learning models; viz: Naives Bayes, Decision trees 

(J48), Support Vector machines (SVN), and 
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Sequential Machine optimization (SMO). These 

pragmatic models were evaluated and compared 

using data sets as obtained from NSL-KDDCup. 

This method takes into consideration the relative 

sizes of the classes to each other in the dataset. This 

allows the user of the Intrusion Detection Systems 
(IDS) to evaluate how well they will predict the 

classes given the distribution of the dataset. In 

these comparative data analyses, we plotted various 

graphs and charts to analyze the results of the 

various models which give us experimental 

parameters as obtained in section (4.4). The 

itemized below are vital in our simulations 

undertakings: 

1. Time taken to built the results of each 

Algorithms; 

2. The Kappa Statistics of the Algorithms; 

3. Area under the curve(AUC); 
4. False positives 

5. Receiver Operating Characteristics(ROC) 

Graphs; and 

6. Experimenter results of train and test data 

on WEKA. 

The simulated outputs for the aforementioned 

models were executed using open source software 

named WEKA. The output parameters were 

collected and all the various parameters filtered 

into various tables as shown. In order to give visual 

conception, we carried out various computational 
analyses to give us semblance of graphical 

constructions that are related to some parameters 

(time, kappa characteristics, ROC etc.) of our 

experiments.  

 

B. Visualization of Experimental works 

We give clear visualization for our experiments as 

followings: 

Receiver Operating Characteristics (ROC) 

Our Data sets were acquired from 1998 DARPA. 

Using this huge data set, we carried out various 

evaluations which enable us to obtain various 
patterns of intrusion detection parameters.  

Detected results were compared with the total 

number of network sessions to give two summary 

measures of an IDS’s performance: Detection rate 

(intrusions detected divided by intrusions 

attempted) and false alarm rate (false alarms 

divided by total network sessions). These summary 

measures were taken as an estimate of one point on 

the IDS’s receiver operating characteristic (ROC) 

curve which is hereunder explained.  A ROC curve 

is a plot of detection probability of positive 
detection versus false alarm detection probability. 

It shows the probability of detection provided by 

the IDS at a given false alarm probability. 

Alternatively, it shows the false alarm probability 

provided by the IDS at a given probability of 

detection. 

Receiver Operating Characteristic (ROC) curves; 

identify how the true positives vary with the false 

Positives. The area under these curves signifies 

how well the test used can distinguish between the 

examples. The more the example classes overlap 

relative to the test, the less the area under the ROC 
curve will be. ROC curves show how well a test 

does at distinguishing between classes without 

taking the relative frequency of the classes into 

account. The authors have observed that in the 

ROC curves created by the Decision Tree in 

WEKA, there are few points. This is most likely 

because many of the decision tree branches are 

discrete. Whether an edge is followed is therefore a 

binary decision (e.g. something either is or isn’t an 

ftp connection).On continuous valued attributes, 

the numbers can be changed to affect the number of 

examples classified as normal and as an attack). 
The followings are the realities of what ROC is and 

it uses:  

1. The ROC curve allows us to see, in a 

simple visual display, how sensitivity and 

specificity vary as our threshold varies 

2. The shape of the curve also gives us some 
visual clues about the overall strength of 

association between the underlying test 

statistic 

3. Area under curve of  ROC represent the 

total area of the grid represented by an 

ROC curve is 1, since both TPR and FPR 

range from 0 to 1  

4. The portion of this total area that falls 
below the ROC curve is known as the 

area under the curve(AUC) 

5. An AUC of 1.0 would mean that the test 

statistic could be used to perfectly 

classified  between cases and controls 

6. An AUC of 0.5 (reflected by the diagonal 
45° line) is equivalent to simply guessing 

7. The following define the values of AUC 

and their corresponding interpretations: 

           .90-1.0 = excellent 

           .80-.90 = good 

           .70-.80 = fair 

          .60-.70 = poor 

          .50-.60 = fail 
        <.50 is worse than guess work 

C.  The kappa statistic  
The Kappa statistics measures the agreement of 

prediction with the true class. 1.0 signifies 

complete agreement. For the example taken from 

fig. 4.1 the Kappa characteristics is 0.7906 

D. The confusion matrix 

 The confusion matrix is more commonly named 

contingency table. In our case we have two classes, 

and therefore a 2x2 confusion matrix, the matrix 

could be arbitrarily large. The number of correctly 
classified instances is the sum of diagonals in the 
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matrix; all others are incorrectly classified (class 

"a" gets misclassified as "b" exactly twice, and 

class "b" gets misclassified as "a" three times. 

From fig.4.1 the Matrix is as given below. 

        === Confusion Matrix === 

 
                   a           b        <-- classified as 

               12272     1177 |    a = normal 

1445  10298 |    b = anomaly 

 

E. The True Positive (TP)  
The True Positive (TP) rate is the proportion of 

examples which were classified as class x, among 

all examples which truly have class x, i.e. how 

much part of the class was captured. It is equivalent 

to Recall. In the confusion matrix, this is the 

diagonal element divided by the sum over the 

relevant row. 
 

Anomalyfor

andnormalfor
rowrelevanttheoversum

ElementDiagonal
TP

877.0
11743

10298

;912.0
13449

12273





 

F. The False Positive (FP)  
The False Positive (FP) rate is the proportion of 

examples which were classified as class x, but 

belong to a different class, among all examples 
which are not of class x. In the matrix, this is the 

column sum of class x minus the diagonal element, 

divided by the rows sums of all other classes. 

Anomalyfor

Normalfor
classesallofsumsRows

ElementDiagonalsumColumn
FP

088.0
13449

1177

;123.0
11743

1445








 

G. The Precision  
The Precision is the proportion of the 

examples which truly have class x among 

all those which were classified as class x. 

In the matrix, this is the diagonal element 

divided by the sum over the relevant 

column. 

         

Anormalfor

andNormalfor
Columnrelevanttheoverumo

ElementDiagonal
PRECISION

897.0
11475

10298

;895.0
13717

12272





 

H. The F-Measure 

The F-Measure is simply 2*Precision*Recall/ 

(Precision+ Recall), a combined measure for 

precision and recall 

I. Research Question/Hypothesis Analysis 

There are so many potential Stakeholders for the 

results of quantitative evaluations of IDS accuracy. 

Acquisition managers need such information to 

improve the process of system selection, which is 

too often based only on the claims of the vendors 

and limited-scope reviews in trade magazines. 

Security analysts who review the output of IDSs 

would like to know the likelihood that alerts will 

result when particular kinds of attacks are initiated. 
Finally, Research & Development program 

managers need to understand the strengths and 

weaknesses of currently available systems so that 

they can effectively focus research efforts on 

improving systems, and measure their progress. 

Therefore the security of any enterprise network 

become a concern of any Systems Administrator as 

Intruders over time invades and targeted networks 

of interest. Attempts have been made to get a 

solution to this security menace. Of interest to us in 

this research is to Compare and get a more suitable 

Data mining techniques that could be used in the 
Analysis of NSL-KDDCUP data and other related 

intrusion detection experiments. We apply the data 

set as obtained from NSL- KDDCUP’99 for our 

research because we lack the necessary equipment 

to generate our own experimental works; which is a 

ban of all researchers will experience in Nigeria for 

lack of effective network Laboratories. Data 

collected for experimentations for training set 

normally take a long period of time. This data so 

collected are use for training before we latter have 

data for testing abnormalities intrusions; thus 
acquire abnormal detects. Significant results of 

training are hereby given in Section 4.4, below. 

 

V. RESULTS 

List of Results Tables Showing Tabulated 

Parameters Taken From Weka Software Output 

Time taken to build model: 1.66 seconds 

=== Stratified cross-validation === 

=== Summary === 

Correctly Classified Instances         22570               

89.5919 % 

Incorrectly Classified Instances      2622               

10.4081 % 

Kappa statistic                                 0.7906 

Mean absolute error                         0.1034 
Root mean squared error                 0.3152 

Relative absolute error                    20.7817 % 

Root relative squared error             63.1897 % 

Coverage of cases (0.95 level)        90.9654 % 

Mean rel. region size (0.95 level)   51.2385 % 

Total Number of Instances            25192    

=== Detailed Accuracy By Class === 

                           TP Rate      FP Rate      Precision      

Recall       F-Measure     ROC Area   Class 

                               0.912          0.123          0.895            

0.912          0.903        0.968        normal 

                             0.877          0.088          0.897            
0.877          0.887          0.963       anomaly 



             International Journal of Engineering Applied Sciences and Technology, 2020    

                                     Vol. 5, Issue 6, ISSN No. 2455-2143, Pages 85-110 
                         Published Online October 2020 in IJEAST (http://www.ijeast.com)                                                                                                                                                                                                                                                                                                                                                                                                                    

98 

 

Weighted Avg.    0.896          0.106          0.896            

0.896           0.896          0.966 

=== Confusion Matrix === 

     a                 b   <-- classified as 

 12272           1177 |     a = normal 

  1445          10298 |     b = anomaly 
Fig 4.1 An Example of an output for Naïve 

Bayesian model 

 

TABLEB1: 42 Attributes Naïve Bayes train data 

Time taken to build model: 1.59 seconds 

=== Stratified cross-validation === 

=== Summary === 

Correctly Classified Instances        18200               

80.731  % 

Incorrectly Classified Instances       4344               

19.269  % 

Kappa statistic                                 0.623  
Mean absolute error                       0.1924 

Root mean squared error                0.4371 

Relative absolute error             39.2297 % 

Root relative squared error      88.2712 % 

Coverage of cases (0.95 level) 81.1657 % 

Mean rel. region size (0.95 level)      50.3903 % 

Total Number of Instances            22544      

=== Detailed Accuracy By Class === 

                            TP Rate   FP Rate   Precision   

Recall   F-Measure   ROC Area   Class 

                               0.95      0.301        0.705         
0.95       0.809             0.958       normal 

                               0.699    0.05          0.949         

0.699     0.805             0.949       anomaly 

Weighted Avg.      0.807     0.158        0.844        

0.807      0.807             0.953 

=== Confusion Matrix === 

    a               b   <-- classified as 

 9225        486 |    a = normal 

 3858      8975 |    b = anomaly 

 

TABLEB2: 42 Attributes Naïve Bayes for 20 

percent test data 
Time taken to build model: 0.78 seconds 

=== Stratified cross-validation === 

=== Summary === 

Correctly Classified Instances                   7783               

65.6793 % 

Incorrectly Classified Instances                4067               

34.3207 % 

Kappa statistic                                          0.2798 

Mean absolute error                                 0.3343 

Root mean squared error                         0.562  

Relative absolute error                            112.4401 
% 

Root relative squared error                      145.7894 

% 

Coverage of cases (0.95 level)                  73.5527 

% 

Mean rel. region size (0.95 level)          55.4684 % 

Total Number of Instances                    11850      

=== Detailed Accuracy By Class === 

                                

       TP Rate   FP Rate   Precision   

Recall    F-Measure   ROC Area    

Class 

                                0.83         0.382       0.326         
0.83        0.468           0.848           normal 

                                0.618       0.17         0.943         

0.618      0.747           0.844          anomaly 

Weighted Avg.       0.657        0.208       0.831         

0.657      0.696           0.845 

=== Confusion Matrix === 

    a              b   <-- classified as 

 1787          365 |    a = normal 

 3702        5996 |    b = anomaly 

 

TABLEB3: 42 Attributes for train data using 

trees – j48 
Time taken to build model: 13.55 seconds 

=== Stratified cross-validation === 

=== Summary === 

Correctly Classified Instances                25081               

99.5594 % 

Incorrectly Classified Instances                 111                

0.4406 % 

Kappa statistic                                       0.9911 

Mean absolute error                              0.0064 

Root mean squared error                      0.0651 

Relative absolute error                         1.2854 % 
Root relative squared error                  13.059  % 

Coverage of cases (0.95 level)          99.6229 % 

Mean rel. region size (0.95 level)      50.2997 % 

Total Number of Instances                 25192      

=== Detailed Accuracy By Class === 

                                     TP Rate   FP Rate   

Precision   Recall   F-Measure   ROC Area   Class 

                                       0.996      0.004       0.996         

0.996     0.996          0.998           normal 

                                       0.996      0.004       0.995         

0.996     0.995          0.998          anomaly 

Weighted Avg.               0.996     0.004        0.996         
0.996     0.996          0.998 

=== Confusion Matrix === 

     a                     b   <-- classified as 

 13389               60 |     a = normal 

    51            11692 |     b = anomaly 

 

TABLEB4: 42 attributes for test data using 

trees -j48 

Number of Leaves  :  500 

Size of the tree :  590 

Time taken to build model: 4.05 seconds 
=== Stratified cross-validation === 

=== Summary === 

Correctly Classified Instances       11509               

97.1224 % 

Incorrectly Classified Instances       341                

2.8776 % 

Kappa statistic                                 0.9022 
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Mean absolute error                        0.0389 

Root mean squared error                  0.1552 

Relative absolute error                 13.1002 % 

Root relative squared error                40.2591 % 

Coverage of cases (0.95 level)           98.557 % 

Mean rel. region size (0.95 level)      53.0338 % 
Total Number of Instances                11850      

=== Detailed Accuracy By Class === 

                                         TP Rate    FP Rate   

Precision   Recall   F-Measure   ROC Area   Class 

                                            0.908     0.015        

0.932        0.908     0.92            0.971         normal 

                                            0.985     0.092        0.98          

0.985     0.982          0.971        anomaly 

Weighted Avg.                   0.971     0.078         

0.971        0.971     0.971          0.971 

=== Confusion Matrix === 

    a                 b   <-- classified as 
 1953           199 |    a = normal 

  142          9556 |    b = anomaly 

 

TABLEB5: 42 attributes for train data using 

libsvm 

Test mode:    2-fold cross-validation 

=== Classifier model (full training set) === 

LibSVM wrapper, original code by Yasser EL-

Manzalawy (= WLSVM) 

Time taken to build model: 1234.28 seconds 

=== Stratified cross-validation === 
=== Summary === 

Correctly Classified Instances       23686               

94.0219 % 

Incorrectly Classified Instances      1506                

5.9781 % 

Kappa statistic                                  0.8789 

Mean absolute error                         0.0598 

Root mean squared error                  0.2445 

Relative absolute error                    12.0113% 

Root relative squared error              49.0128% 

Coverage of cases (0.95 level)         94.0219% 

Mean rel. region size (0.95 level)    50% 
Total Number of Instances              25192      

=== Detailed Accuracy By Class === 

                               TP Rate   FP Rate   Precision   

Recall   F-Measure   ROC Area   Class 

                                  0.999     0.128          0.9         

0.999     0.947                0.936    normal 

                                  0.872     0.001          0.999     

0.872     0.932                0.936    anomaly 

Weighted Avg.         0.94       0.068           0.946     

0.94       0.94                  0.936 

=== Confusion Matrix === 
     a                    b   <-- classified as 

 13442                 7 |     a = normal 

  1499          10244 |     b = anomaly 

 

TABLEB6: 42 attributes for train data using 

libsvm 

=== Classifier model (full training set) === 

LibSVM wrapper, original code by Yasser EL-

Manzalawy (= WLSVM) 

Time taken to build model: 293.98 seconds 

=== Stratified cross-validation === 

=== Summary === 

Correctly Classified Instances       10802               
91.1561 % 

Incorrectly Classified Instances      1048                

8.8439 % 

Kappa statistic                                 0.6457 

Mean absolute error                         0.0884 

Root mean squared error                 0.2974 

Relative absolute error                    29.7488% 

Root relative squared error             77.1396% 

Coverage of cases (0.95 level)        91.1561% 

Mean rel. region size (0.95 level)   50% 

Total Number of Instances             11850      

=== Detailed Accuracy By Class === 
                          TP Rate   FP Rate   Precision   

Recall   F-Measure   ROC Area   Class 

                            0.551     0.008      0.936          

0.551     0.693                 0.771    normal 

                            0.992     0.449      0.909          

0.992     0.948                 0.771    anomaly 

Weighted Avg.    0.912     0.369      0.914         

0.912     0.902                 0.771 

=== Confusion Matrix === 

    a                b   <-- classified as 

 1185            967 |    a = normal 
   81            9617 |    b = anomaly 

 

TABLEB7: 42 attributes for test data using 

function SMO 

Time taken to build model: 523.19 seconds 

=== Stratified cross-validation === 

=== Summary === 

Correctly Classified Instances       10880               

91.8143 % 

Incorrectly Classified Instances       970                

8.1857 % 

Kappa statistic                                  0.6868 
Mean absolute error                          0.0819 

Root mean squared error                  0.2861 

Relative absolute error                     27.5347% 

Root relative squared error              74.2135% 

Coverage of cases (0.95 level)         91.8143% 

Mean rel. region size (0.95 level)    50% 

Total Number of Instances              11850      

=== Detailed Accuracy By Class === 

                                    TP Rate   FP Rate   Precision   

Recall     F-Measure   ROC Area      Class 

                                       0.619     0.016      0.898         
0.619        0.733          0.802            normal 

                                       0.984     0.381      0.921         

0.984        0.952          0.802           anomaly 

Weighted Avg.              0.918     0.314      0.917         

0.918        0.912          0.802 

=== Confusion Matrix === 

    a            b   <-- classified as 
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 1333        819 |    a = normal 

  151       9547 |    b = anomaly 

TABLEB8: 25 attributes Naïve Bayes train data 

Time taken to build model: 6.72 seconds 

=== Stratified cross-validation === 

=== Summary === 
Correctly Classified Instances       24234               

96.1972 % 

Incorrectly Classified Instances       958                

3.8028 % 

Kappa statistic                                  0.9233 

Mean absolute error                          0.0411 

Root mean squared error                   0.1822 

Relative absolute error                      8.2601 % 

Root relative squared error               36.5231 % 

Coverage of cases (0.95 level)          97.7612 % 

Mean rel. region size (0.95 level)     52.4571 % 

Total Number of Instances                25192      
=== Detailed Accuracy By Class === 

                                    TP Rate   FP Rate   Precision   

Recall    F-Measure   ROC Area    Class 

                                       0.987     0.067       0.944        

0.987     0.965              0.996        normal 

                                       0.933     0.013       0.985        

0.933     0.958              0.996       anomaly 

Weighted Avg.              0.962     0.042       0.963        

0.962     0.962               0.996 

=== Confusion Matrix === 

     a               b   <-- classified as 
 13277         172 |     a = normal 

   786       10957 |     b = anomaly 

TABLEB9: 25 Attributes Decision Trees-J48 for 

train data 

Number of Leaves:  262 

Size of the tree:  314 

Time taken to build model: 7.41 seconds 

=== Stratified cross-validation === 

=== Summary === 

Correctly Classified Instances       25070               

99.5157 % 

Incorrectly Classified Instances       122                
0.4843 % 

Kappa statistic                                 0.9903 

Mean absolute error                         0.0075 

Root mean squared error                  0.0687 

Relative absolute error                     1.5046 % 

Root relative squared error               13.7643 % 

Coverage of cases (0.95 level)          99.5554 % 

Mean rel. region size (0.95 level)     50.1707 % 

Total Number of Instances               25192      

=== Detailed Accuracy By Class === 

                           TP Rate   FP Rate   Precision   
Recall   F-Measure   ROC Area    Class 

                              0.996     0.006      0.995         

0.996     0.995           0.996          normal 

                              0.994     0.004      0.996         

0.994     0.995           0.996         anomaly 

Weighted Avg.     0.995     0.005      0.995         

0.995     0.995            0.996 

=== Confusion Matrix === 

     a              b   <-- classified as 

 13398            51 |     a = normal 

    71         11672 |     b = anomaly 

 

TABLE B10: 25 Attributes function LibSVM of 

train data 

Test mode:    2-fold cross-validation 

=== Classifier model (full training set) === 

LibSVM wrapper, original code by Yasser EL-

Manzalawy (= WLSVM) 

Time taken to build model: 2757.88 seconds 

=== Stratified cross-validation === 

=== Summary === 

Correctly Classified Instances       23023               

91.3901 % 

Incorrectly Classified Instances      2169                

8.6099 % 
Kappa statistic                                 0.825  

Mean absolute error                         0.0861 

Root mean squared error                  0.2934 

Relative absolute error                     17.2991 % 

Root relative squared error              58.8202 % 

Coverage of cases (0.95 level)         91.3901 % 

Mean rel. region size (0.95 level)     50 % 

Total Number of Instances               25192      

=== Detailed Accuracy By Class === 

                                

 
         TP Rate   FP Rate   

Precision   Recall   F-Measure   

ROC Area    Class 

                                     1         0.184       0.861            

1         0.925                0.908    normal 

                                0.816           0          1                

0.816      0.898               0.908    anomaly 

Weighted Avg.       0.914     0.099      0.926             

0.914     0.913               0.908 

=== Confusion Matrix === 

     a          b   <-- classified as 

 13446         3 |     a = normal 
  2166    9577 |     b = anomaly 

 

TABLE B11: 25 Attributes function SMO of 

train data 

Number of kernel evaluations: 107619127 

(45.871% cached) 

Time taken to build model: 671.05 seconds 

=== Stratified cross-validation === 

=== Summary === 

Correctly Classified Instances          24510               

97.2928 % 
Incorrectly Classified Instances       682                

2.7072 % 

Kappa statistic                                  0.9455 

Mean absolute error                          0.0271 

Root mean squared error                  0.1645 

Relative absolute error                     5.4394 % 

Root relative squared error               32.9829 % 
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Coverage of cases (0.95 level)          97.2928 % 

Mean rel. region size (0.95 level)      50 % 

Total Number of Instances            25192      

=== Detailed Accuracy By Class === 

                           TP Rate   FP Rate   Precision   

Recall   F-Measure    ROC Area     Class 
                              0.985     0.041      0.965         

0.985     0.975             0.972           normal 

                              0.959     0.015      0.983         

0.959     0.971             0.972           anomaly 

Weighted Avg.     0.973     0.029      0.973         

0.973     0.973             0.972 

=== Confusion Matrix === 

     a               b   <-- classified as 

 13250         199 |     a = normal 

   483       11260 |     b = anomaly 

 

TABLE B12: 19 Attributes Naïve Bayes train 

data 

Time taken to build model: 0.69 seconds 

=== Stratified cross-validation === 

=== Summary === 

Correctly Classified Instances       23216               

92.1562 % 

Incorrectly Classified Instances      1976                

7.8438 % 

Kappa statistic                                0.8418 

Mean absolute error                        0.0793 

Root mean squared error                0.2757 
Relative absolute error                   15.9327 % 

Root relative squared error             55.2604 % 

Coverage of cases (0.95 level)       92.9144 % 

Mean rel. region size (0.95 level)      51.0162 % 

Total Number of Instances                25192      

=== Detailed Accuracy By Class === 

                           TP Rate   FP Rate   Precision   

Recall    F-Measure   ROC Area      Class 

                             0.952     0.114         0.906       

0.952     0.928             0.973            normal 

                             0.886     0.048         0.942       

0.886     0.913             0.967           anomaly 
Weighted Avg.    0.922     0.083         0.923       

0.922     0.921              0.97  

=== Confusion Matrix === 

     a               b   <-- classified as 

 12809          640 |     a = normal 

  1336       10407 |     b = anomaly 

 

TABLE B19: 19 Attributes Decision Trees-J48 

for train data 

Number of Leaves  :  189 

Size of the tree :  237 
Time taken to build model: 4.63 seconds 

=== Stratified cross-validation === 

=== Summary === 

Correctly Classified Instances         25046               

99.4205 % 

Incorrectly Classified Instances       146                  

0.5795 % 

Kappa statistic                                  0.9884 

Mean absolute error                          0.009  

Root mean squared error                   0.0745 

Relative absolute error                       1.8057 % 

Root relative squared error                14.9359 % 

Coverage of cases (0.95 level)           99.5435 % 
Mean rel. region size (0.95 level)      50.6828 % 

Total Number of Instances                 25192      

=== Detailed Accuracy By Class === 

                          TP Rate   FP Rate   Precision   

Recall    F-Measure   ROC Area      Class 

                             0.996     0.008      0.993         

0.996     0.995             0.996            normal 

                             0.992     0.004      0.995         

0.992     0.994             0.996           anomaly 

Weighted Avg.    0.994     0.006      0.994          

0.994     0.994             0.996 

=== Confusion Matrix === 
     a               b   <-- classified as 

 13394          55 |     a = normal 

    91       11652 |     b = anomaly 

 

TABLE B14: 19 Attributes function LibSVM of 

train data 

=== Classifier model (full training set) === 

LibSVM wrapper, original code by Yasser EL-

Manzalawy (= WLSVM) 

Time taken to build model: 1187.69 seconds 

=== Stratified cross-validation === 
=== Summary === 

Correctly Classified Instances       22743               

90.2787 % 

Incorrectly Classified Instances      2449                

9.7213 % 

Kappa statistic                                  0.8021 

Mean absolute error                          0.0972 

Root mean squared error                  0.3118 

Relative absolute error                    19.5322 % 

Root relative squared error             62.5016 % 

Coverage of cases (0.95 level)        90.2787 % 

Mean rel. region size (0.95 level)   50 % 
Total Number of Instances            25192      

=== Detailed Accuracy By Class === 

                            TP Rate   FP Rate   Precision   

Recall    F-Measure   ROC Area        Class 

                                  1         0.208      0.846            1         

0.917             0.896              normal 

                               0.792     0             1                

0.792     0.884             0.896             anomaly 

Weighted Avg.      0.903     0.111      0.918         

0.903     0.901             0.896 

=== Confusion Matrix === 
     a             b   <-- classified as 

 13446            3 |     a = normal 

  2446       9297 |     b = anomaly 

TABLE B15: 19 Attributes function SMO of 

train data 

Number of kernel evaluations: 117638676 

(44.952% cached) 
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Time taken to build model: 631.05 seconds 

=== Stratified cross-validation === 

=== Summary === 

Correctly Classified Instances       24503               

97.265  % 

Incorrectly Classified Instances       689                
2.735  % 

Kappa statistic                                  0.945  

Mean absolute error                          0.0273 

Root mean squared error                  0.1654 

Relative absolute error                      5.4952 % 

Root relative squared error               33.1517 % 

Coverage of cases (0.95 level)          97.265  % 

Mean rel. region size (0.95 level)      50 % 

Total Number of Instances                25192      

=== Detailed Accuracy By Class === 

                            TP Rate   FP Rate   Precision   

Recall   F-Measure   ROC Area    Class 
                              0.985     0.041        0.965        

0.985     0.975           0.972           normal 

                              0.959     0.015        0.982        

0.959     0.97             0.972          anomaly 

Weighted Avg.     0.973     0.029        0.973        

0.973     0.973            0.972 

=== Confusion Matrix === 

     a             b   <-- classified as 

 13245        204 |     a = normal 

   485      11258 |     b = anomaly 

 

A. Discussion of Results 

We now discuss the output obtained in fig 4.1. Our 

first experimental object was truncated from the 

original KDDCup’99 with 42 attributes. Each 

object is defined in 42 attributes, and belongs to 

one of the five classes: normal and any of these 

attacks: probe, denial-of service (DOS), 

unauthorized access to root (U2R) and 

unauthorized access from remote machine (R2L) 

referring to an Anomaly. The different classes of 

Attacks are as giving below: 

 

1. Denial of Service Attacks:  
In denial of service the attacker develops some 

computing or memory resource available or 

unavailable to manage valid requirements, or reject 

valid user’s rights to use a machine.  

2. User to Root Attacks:  
In User to Root attack, the attacker initiate by using 

a normal user account on the system and take 

advantage of some vulnerability to achieve root 

access to the system.  

3. Remote to User Attacks:  
Remote to User attack takes place when an attacker 

has the ability to send packets to a machine over a 

network but does not have an account on that 

machine, performing some vulnerability to access 

as a user of that machine.  

 

 

4. Probes:  

Probing is a kind of attacks that takes place when 

an attacker checks a network to collect information 

or find out well-known threats. This information is 

helpful for an attacker who plans to make an attack 

in future. There are different types of probes such 
as abusing the system’s legitimate features, using 

social engineering methods. However this type of 

attack requires few technical expertises.  

Objects in the normal class are harmless 

connections, whereas objects in the other Anomaly 

class are different types of attacks. The training set 

contains 125,972 connections; the test data includes 

22,543. The KDD Cup 1999 data set is the only 

large-scale, publicly available data for evaluating 

intrusion detection tools. A detailed description of 

the data set is available on the Attack Analysis 

sheet. We have used a subset of the 20% of the new 
NSL-KDDCup 2009, otherwise known as refined 

KDDCup ‘99 dataset as our train dataset and 21% 

of the test data. The test dataset is the same as that, 

which was used in evaluating classification 

algorithms in KDD-Cup 99 contest.  

We normalized the train and test data sets, where 

each numerical value in the data set is normalized 

between 0.0 and 1.0. Fig.4.1 shows a complete 

output of Naïve Bayesian algorithm from WEKA 

software. All other parameters are taken from the 

output as the experiments were carried out for all 
the algorithms.  

We will now continue with the discussion of the 

results using the following parameters: 

Table 5. Cross Validation Summary. 

Summary of train data for 42 attributes 
 

 

 

 

 

Summarize 
Properties for 42 

attributes 

Naïve 
Bayes 

J48 
decisi

on 

Trees 

Lib SVM 
(SVM) 

Optimized SVM(SMO) 

 2 fold cross 

validation 

10 fold cross 

validation 

Time taken to build 

the model(s) 

1.6 13.55 1234.28 850.42 501.38 

Incorrectly 
classified Instances 

2622 111 1506 677 970 

Correctly classified 

instances 

22570 25081 23686 24515 10880 

Total number of 

instances  

25192 25192   25192 25192 11850 

% of correctly 

classified instances 

89.5919 99.55

94 

94.0219 97.3126 91.8143 

% of incorrectly 
classified instances 

10.4081 0.440
6 

5.9781 2.6874 8.1857 

Kappa Statistics 0.7906 0.991

1 

0.8789 0.9459 0.6868 
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Fig. 3.  A Graph of Different types of Algorithm as 

against time taken to build the model(s) for 42  

Attributes 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6: Summary of train data for 25 attributes 

 

 

 

 
Fig 4. A Graph of Different types of Algorithm as  

against time taken to build the model (secs) for 25  

attributes 
 

    Table 7. Summary of train data for 19 attributes 

 
Summarize Properties 

for 19 attributes 

Naïv

e 

Baye

s 

J48 

decisi

on 

Trees 

Lib 

SVM 

(SVM

) 

Optimized 

SVM(SM

O) 

Time taken to build the 

model(s) 

0.69 4.09 1187.

69 

631.05 

Incorrectly classified 

Instances 

1976 146 2449 689 

Correctly classified 

instances 

2321

6 

25046 22743                24503 

Total number of 

instances  

2519

2 

25192   25192 25192 

% of correctly classified 

instances 

92.1

562 

99.42

05 

90.27

87 

97.265   

% of incorrectly 

classified instances 

7.84

38 

0.579

5 

9.721

3 

2.735   

Kappa Statistics 0.84

18 

0.988

4 

0.802

1 

0.945 

 

 

 
Fig 5. A Graph of Different types of Algorithm as 

against time taken to build the model (secs) for 19 

attributes 

 
A. Time taken to build the model. 

Fig 4.2 - 4.4 shows time taken to build the model 

for every algorithm above. From the tables and 

charts, it is clear that Naïve bayes algorithm takes 

a shorter time to build a model, averaging between 

1.66s for 42 attributes to 0.95s for 25 attributes and 

0.69 for 19 attributes. This is closely followed by 

J48. LibSVM took longer time to build a model, 

this is due to the time it takes to build a quadratic 

functions. SMO took shorter time than LibSVM 

because the functions in SMO are decomposed 

into serial minimal Quadratic problems. 

              

Kappa Statistics Algorithms Charts 

 

 

 

  

Summarize Properties for 25 
attributes 

Naïve 
Bayes 

J48 decision 
Trees 

LibSVM 
(SVM) 

Optimized 
SVM(SMO

) 

Time taken to build the 

model(s) 

0.95 7.41 2757.88 671.05 

Incorrectly classified Instances 2782 122 2169 682 

Correctly classified instances 22410 25070   23023 24510 

Total number of instances  25192 25192   25192 25192 

% of correctly classified 

instances 

88.9568 99.5157 91.3901 97.2928 

% of incorrectly classified 

instances 

11.0432 0.4843 8.6099 2.7072 

Kappa Statistics 0.9233 0.9903 0.825 0.9455 
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Fig 6. A Graph of different Algorithms against 

Kappa Statistic for 42 attributes 

 

A. Kappa Characteristics 
From the above Chart, The Kappa characteristic 

measures the agreement of a prediction to the true 

class. The higher the value of prediction; the better 

the prediction. Fig 4.5 shows 

 that J48 has the highest Kappa characteristics 

hovering around 0.98 to 0.99, competitively 

followed by SMO and Naive Bayesian. The highest 

value that Kappa characteristics can go is a value of 

one. 

 

           

 

 

DETAILED ACCURACY BY CLASS 

Table 8. for Detailed accuracy by class for 42 attributes 

 

 

Table 9. for Detailed accuracy by class for 25 attributes 

 

 

Area under curve (AUC) chart 
 

B.  Area under the curve (AUC) 

Fig7 show Bar graphs of AUC for all the set of experiments we carried out. For each set of attributes, J48 shows 

a higher value over and above other algorithms. Just like the Kappa characteristic is gauge with a value 1 as the 

highest, so is AUC. This again suggests that J48 is a better algorithm for data classifications. 

 

 

 

 

Accuracy 

description  
Naïve Bayes  J48  LibSVM  SMO  

 Nor. Ano. Aver Nor. Ano. Aver Nor. Ano. Aver Nor. Ano. Aver 

True positive  0.83     0.618      0.657      0.908      0.985     0.971      0.551      0.992     0.912       0.619      0.984      0.918  
False Positive 0.382       0.17       0.208      0.015       0.092       0.078       0.008       0.449       0.369       0.016       0.381       0.314  
Precision  0.326     0.943      0.943      0.932     0.98     0.971     0.936     0.909     0.914    0.898      0.921      0.917     

Recall  0.83      0.618     0.618     0.908     0.985     0.971      0.551      0.992     0.912     0.619      0.984      0.918  
F- measure  0.468      0.747      0.747       0.92       0.982     0.971       0.693       0.948       0.902      0.733       0.952      0.912       

ROC Area  0.848     0.844    0.696  0.971     0.971   0.971     0.771    0.771    0.771   0.802    0.802     0.802     

Accuracy 

description  
Naïve Bayes  J48  LibSVM  SMO  

 Nor. Ano. Aver Nor. Ano. Aver Nor. Ano. Aver Nor. Ano. Aver 

True positive  0.911            0.865       0.89       0.996         0.994            0.995           1   0.816     0.914       0.985         0.959       0.973        

False Positive 0.135         0.089           0.114   0.006        0.004           0.005          0.184        0            0.099            0.041           0.015          0.029          

Precision  0.885         0.895         0.89          0.995      0.996       0.995   0.861      1   0.926       0.965        0.983         0.973        

Recall  0.911      0.865       0.89          0.996          0.994    0.995         1    0.816        0.914      0.985       0.959         0.973         

F- measure  0.898       0.88        0.889       0.995       0.995       0.995       0.925       0.898       0.913  0.975       0.971       0.973       

ROC Area  0.968     0.962  0.965  0.996     0.996     0.996  0.908     0.908     0.908     0.972     0.972     0.972  
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Fig 7. A Graph of different Algorithms against ROC 

Table for Detailed accuracy by class for 42 attributes test data 

 

False positive rate chart 

 

 

 

 
 

 

 

 

 

 

 

 

Fig 8. A Graph of Different Algorithms against False Positives 42 attributes test data 

 

E. False positive rate 
False positives rate gives the value of events that are wrongly classified. From the graphs in Fig 4.7, J48 has the 

lowest false positive rate as low as 0.078 as against LibSVM that recorded 0.37 at a time when we ran it on 42 

attributes. This suggests that J48 algorithm has lower rates of errors than the other data mining Machines. 

  

 

 

 

Accuracy 

description  

Naïve Bayes  J48  LibSVM  SMO  

 Nor. Ano. Aver Nor. Ano. Aver Nor. Ano. Aver Nor. Ano. Aver 

True 

positive  

0.83     0.618      0.657      0.908      0.985     0.971      0.551      0.992     0.912       0.619      0.984      0.918  

False 

Positive 

0.382       0.17       0.208      0.015       0.092       0.078       0.008       0.449       0.369       0.016       0.381       0.314  

Precision  0.326     0.943      0.943      0.932     0.98     0.971     0.936     0.909     0.914    0.898      0.921      0.917     

Recall  0.83      0.618     0.618     0.908     0.985     0.971      0.551      0.992     0.912     0.619      0.984      0.918  

F- measure  0.468      0.747      0.747       0.92       0.982     0.971       0.693       0.948       0.902      0.733       0.952      0.912       

ROC Area  0.848     0.844    0.696  0.971     0.971   0.971     0.771    0.771    0.771   0.802    0.802     0.802     
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Receiver Operating Characteristics (ROC) Graph  

 
Fig 9. A graph comparing the ROC characteristics for Naïve Bayes, J48 and SMO 

 

 
Fig 10. A graph comparing the ROC characteristics for Naïve Bayes, J48 and SMO. 

F. Receiver Operating Characteristics 

(ROC) 

Fig 4.14 shows the characteristics curve of three 

algorithms. We did not include LibSVM because of 

its scaling capability. As a quadratic function, it has 

linear graphs just as SMO, but SMO load faster 
than LibSVM. We are sure it is because of its serial 

minimal characteristics. It kept giving heap size 

error when ran the entire four algorithms together, 

not until we remove the LibSVM algorithm on 

WEKA knowledge flow. Since SMO and LibSVM 

are both quadratic functions one will suffice to use 

for the purpose of this comparative work. 

The intersection between the Naïve Bayes and the 

linear graph of SMO is described as the point of 

equal error rate for the two algorithms. Equal error 

rate is the point where the usability of the two 

algorithms is as good as the security of the IDS for 

the network. Fig 4.8a is shows the graph for the 
three algorithm in a lower jitter setting, while in fig 

4.8b we increase the jitter setting so as to 

magnified the graph for better clarity of 

understanding. The linear graph is the graph of 

SMO, the thicker line is for the Naïve bayes while 

the last on top with the + sign wind together is for 

J48 algorithm suggesting the best ever among the 

algorithm. 
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G.  Experimenter 
We set up the test bed for the experimenter using 

both train and test data to run two folds to be 

repeated twice. We tried to run it for ten folds to 

repeat 10 times and it took more than 24hrs to 

complete, even at completion it was not 
successfully. This, we attributed it to the quadratic 

nature of LibSVM function, because the log 

showed that it was counting for this algorithm. 

Tester:     weka.experiment.PairedCorrectedTTester 

Analysing:  Percent_correct 

Datasets:   1 

Resultsets: 4 

Confidence: 0.05 (two tailed) 
Sorted by:  - 

Date:       2/21/12 11:43 PM 

Dataset                   (1) trees.J4 | (2) bayes (3) funct 

(4) funct 

--------------------------------------------------------------

-------- 

KDDTest                    (4)   98.43 |   81.16 *   94.62 

*   90.66 * 

--------------------------------------------------------------

-------- 

                               (v/ /*) |   (0/0/1)   (0/0/1)   
(0/0/1) 

Key: 

(1) trees.J48 '-C 0.25 -M 2' -217733168393644444 

(2) bayes.NaiveBayes '' 5995231201785697655 

(3) functions.SMO '-C 1.0 -L 0.0010 -P 1.0E-12 -N 

0 -V -1 -W 1 -K 

\"functions.supportVector.PolyKernel -C 250007 -

E 1.0\"' -6585883636378691736 

(4) functions.LibSVM '-S 0 -K 2 -D 3 -G 0.0 -R 0.0 

-N 0.5 -M 40.0 -C 1.0 -E 0.0010 -P 0.1 -model 

\"C:\\\\Program Files\\\\Weka-3-7\"' 14172 

Fig 4.8a Output of the experimenter using 
KDDTest Dataset  

  

Tester:     weka.experiment.PairedCorrectedTTester 

Analysing:  Percent_correct 

Datasets:   1 

Resultsets: 4 

Confidence: 0.05 (two tailed) 

Sorted by:  - 

Date:       2/22/12 1:46 AM 

Dataset                   (1) trees.J4 | (2) bayes (3) funct 

(4) funct 
--------------------------------------------------------------

-------- 

KDDTrain-20Percent         (4)   99.47 |   89.73 *   

97.31 *   94.00 * 

--------------------------------------------------------------

-------- 

                               (v/ /*) |   (0/0/1)   (0/0/1)   

(0/0/1) 

Key: 

(1) trees.J48 '-C 0.25 -M 2' -217733168393644444 

(2) bayes.NaiveBayes '' 5995231201785697655 

(3) functions.SMO '-C 1.0 -L 0.0010 -P 1.0E-12 -N 

0 -V -1 -W 1 -K 

\"functions.supportVector.PolyKernel -C 250007 -

E 1.0\"' -6585883636378691736 

(4) functions.LibSVM '-S 0 -K 2 -D 3 -G 0.0 -R 0.0 
-N 0.5 -M 40.0 -C 1.0 -E 0.0010 -P 0.1 -model 

\"C:\\\\Program Files\\\\Weka-3-7\"' 14172 

Fig 4.8b Output of the experimenter using 

KDDTrain Data 

 

We make our comparism using the percent correct 

statistic for the four methods which are displayed 

horizontally, numbered (1), (2), (3) and (4), as the 

heading of a little table. The labels for the columns 

are repeated at the bottom—trees.J48, bayes. 

Naivebayes, functions.SMO and functions. 

LibSVM, in case there is insufficient space for 
them in the heading the value in brackets at the 

beginning of the KDDTest as in fig 4.8a row (4) is 

the number of experimental runs: 2 times 2fold 

cross-validation. The percentage correct for the 

four schemes is shown in Figure 4.8a for test data 

and fig 4.15b. For the test data showed in fig 4.8a, 

98.43% for method 1, 81.16% for method 2, 

94.62% for method 3 and 90.66% for method 4. 

The symbol placed beside a result indicates that it 

is statistically better (v) or worse (*) than the 

baseline scheme. In this case J48 at the specified 
significance level (0.05, or 5%) is better than other 

methods. 

As shown, method 2 is significantly worse than 

method 1 because its success rate is followed by an 

asterisk. At the bottom of columns 2, 3 and 4 are 

counts (x/y/z) of the number of times the scheme 

was better than (x), the same as (y) or worse than (z 

the baseline scheme on the datasets used in the 

experiment. In this case there is only one dataset 

i.e. fig 4.8a method 2 was worse than method 1 (the 

baseline) once, method 3 was worse than it once, in 

same way method 4 was worse than the baseline 
once.  (The annotation (v/ /*) is placed at the 

bottom of column 1 to help you remember the 

meanings of the three counts (x/y/z). The 

explanation is applied to fig 4.8b. 

 

VI. CONCLUSION 

We have studied four well known Algorithm using 
WEKA work bench, including Experimenter and 

ROC, the performance or the choice as regards a 

learning algorithm for data mining in Intrusion 

detection systems was also achieved in the study. 

The key motivation for the use of data mining 

method in intrusion detection is enhance 

automation. Data mining technologies, such as 

decision tree (DT), naïve Bayesian classifier (NB), 

Sequential minimal optimization (SMO), support 

vector machine (SVM), k-nearest neighbors 
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(KNN), fuzzy logic model, and genetic algorithm. 

Which is widely used to analyze network logs in 

order to enhance intrusion related knowledge and 

improve the performance of IDS. Data mining 

provide decision support for intrusion management, 

and also help IDS in the detecting of new 
vulnerabilities and intrusions by discovering 

unknown patterns of attacks or intrusions. 

We have achieved the following in this paper, from 

the design and implementation of IDS: Firstly, the 

ability of IDS to be able to detect attacks and the 

percentage of false alarms, ease of use, most secure 

and interoperability J48 version of the decision 

trees is better. This is because it has the lowest 

false positives, highest ROC areas and detection 

rates. Another approach to this parlance is the 

analysis using Kappa characteristics which by 

implication shows that J48 has the higher 
characteristics. We went further to plot a graph of 

false positives against true positives for the 

algorithms and confirm that J48 graph is higher and 

better than other Algorithms. Efforts were also in 

using Experimenter in the same WEKA bench, 

which again proved J48 to have a better (higher) 

value, and by implication the best of the four. It is 

only in efficiency (time taken to process 

information) that Naïve Bayes shows that it can be 

relied on, than other Algorithm. In all the 

combination of attributes Naïve bayes was faster 
than J48 in about 8 times. 

Finally, J48 algorithm proved to be the best of the 

four methods of classifiers investigated, it was 

closely and competitively followed by SMO and 

Naïve Bayesian. In all parameters employed on the 

work bench, SVM shows the worst of the three 

algorithms in the entire different test carried out. 

Thus, we conclude that J48 is a reliable approach 

for generating a high good classification system for 

a given data. The only aspect that Naïve Bayes 

showed superiority over others is in the area of the 

time taken to build model. 
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