
 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 6, ISSN No. 2455-2143, Pages 85-110
 Published Online October 2020 in IJEAST (http://www.ijeast.com)

85

A COMPARATIVE PERFORMANCE

STUDY OF MACHINE LEARNING

ALGORITHMS, FOR EFFICIENT DATA

MINING MANAGEMENT OF INTRUSION

DETECTION SYSTEMS

Salihu Alhasan
Department of Computer

Science, Kebbi State

Polytechnic, Dakingari

Kebbi State, Nigeria

Ajayi Ebenezer Akinyemi
Faculty of Science,

Information Technology

Multimedia University,

Melaka, Malesia

Daniel Dauda Wisdom
Department of Mathematics

Computer Unit, Usmanu

Danfodiyo University

Sokoto (UDUS), Nigeria

ABSTRACTS - Data mining provide decision

support for intrusion management, and also

help in Intrusion Detection System (IDS) in

detecting of new vulnerabilities and intrusions

by discovering unknown patterns of attacks or

intrusions. In this paper, we have compared

four algorithms of Machine Learning models

which are namely: Naives Bayes (NB), Decision

trees (J48), Support Vector machines (SVN),

and Sequential Machine optimization (SMO).

The realistic models were evaluated and

compared using data sets as obtained from NSL-

KDDCup. The method takes into consideration

the relative sizes of the classes to each other in

the dataset. which allows the user of the IDS to

evaluate how well they will predict the classes

given the distribution of the dataset. In addition,

graphs were plotted in order to efficiently

analyze the results obtained of the various

models depicted in Figures. The simulation

results were obtained using WEKA. The

simulation parameters were filtered into various

tables as depicted also in Figures so as to achieve

a visual conception. Finally, we carried out

various computational analyses to give us

semblance of graphical constructions that are

related to some parameters (time, kappa

characteristics, ROC etc.) of our experiments

respectively.

I. INTRODUCTION

It’s a well-known fact that the evolution of modern

network computer connectivity through the Internet

as brought about great security challenge to

computer network systems. Intrusion Malware by

codes is becoming a major threat to the usability,
security and privacy of computer systems and

networks worldwide. This malicious threats has

brought a serious concern to commercial,

industries, and military organizations from

financial activities and power system operations to

Internet information communication and aircraft

reconnaissance and attack activities (Holloway et
al., 2009). Thus, network security is a very serious

concern in military environment and other

enterprises (such as government bodies, academic

institutions and large corporations). However,

outsider intrusion detection systems, insider covert

network detection and system anomaly detection

techniques are important security tools in Cyber

space. So many such systems have been proposed

with the use of standard hierarchical management

structures with identification of features employing

classical pattern recognition algorithms. Evolved in

this detection anomalies are Machine learning
techniques that range from Naïve Bayes, Decision

Trees (J48), Support Vector Machine (SVM) and

Sequential Model optimization (SMO) which is

thrust of this thesis write-up.

A. Security Threats and its Impact

There are many security threats that pose serious

challenge towards the progress of IT economy.

Amongst many attacks like Man in the Middle

Attack, Session Hijacking, Cross site scripting,

Spamming etc. (Handley, 2004), Malicious
activities on the Internet is considered to be the

most deadly weapon (Handley, 2004). In the year

2009, there were several series of malicious attacks

that were carried out against the US information

systems and South Korea IT databases. The attack

is so powerful from several countries like Canada,

Japan, Australia and China. In other attacks, many

government websites were brought down including

the Federal trade commission and Department of

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 6, ISSN No. 2455-2143, Pages 85-110
 Published Online October 2020 in IJEAST (http://www.ijeast.com)

86

Transport (Liu, 2009). We here–under give

categorized element of network security as

addressed:

 B. Nature of Threats

Web based insider attack: These are malware
code written and embedded in javascripts that

become executable code when excited by innocent

clients. These web proliferating malware which are

of various types are called zero-day malware.

These zero-days are difficult to detect using current

intrusion detection system (IDS) mechanisms.

Thus, according to the multitude of internal

analysis, we are fighting a losing battle against

those who create malware (Holloway et al., 2009).

Today, for example, the stealthy worm threat is

currently under control, the computer virus

signature types have grown to increasingly
numbers of polymorphism structural deployment.

Malware are easily encoded into obfuscated

malware which cannot be detected by some current

detectors. In most cases, any computer that is

connected to the internet is guaranteed to attack

within 15 minutes; most attacks are effective. As a

result of this, the malware contemporary effort has

moved to the client side, embedding exploits in

web pages and emails (Holloway et al., 2009).

In order words, border control is no longer

adequate. Intrusion detection must look both into
the network traffic and host activity. Therefore any

kind of defense system should look inwardly into

the internal threats by identifying it, guarantying it,

and eliminating the malicious entities involved.

 Denial of Service Attacks: this is a serious

malicious attack that is worst than worms and virus

infiltration, the malicious of worms and virus are

currently examined to be lower than that of DoS

attack. DoS attacks are mostly effectual; attacking

computers brought by internal instruction from

outside targeted network. DoS attack target come
in various forms such as Trojan Horses. The

objective of a DoS Malware is to render an

organization work flow useless with intermittent

proliferation of the malware packages until the

server can no longer have any space capacity to

accept new information by the users.

Information Exploitation and Corruption: The
dilapidation of network performance as a result of

the effects of these threats result in the corruption

and destruction of information. Malicious agents

(intruders) exploit and remove confidential

information from the networks.

Counter Defense: is a process in which the

Network security officers establish measures to

counteract threats. These are achieved through the
use of system devices called “Intrusion Detectors”

(IDs); these detectors could alert the network

administrator of the malware presence in the

network system of such an organization.

C. Defensive Network

Secure Middleware: Defending network attack is

possible using intrusion detection systems (IDS).

This IDS is very reliable, In that the detectors allow

security to be quickly used to detect and report

back incident. Thus, IDS is a middleware which

forms a computing system that all user of computer

network interact with, in detecting malware. For

instance, in detecting anomalies, Aircraft has

developed middleware called Cyber craft (Karrels

et al., 2007).

Malware (Malicious Software):

They are software designed purposely to cause

damage or discomfort in computer operations.

Malware is also defined as software designed to
infiltrate or damage a computer system without the

owner’s informed consent (Mihai et al., 2005).

Malware includes viruses, worms, Trojans, adware

and spyware. One common feature amongst these

codes is their ability to install themselves on your

machine without your approval. Effects of malware

can range from unnoticeable to annoying to install

mental wreckage and steal important documents.

 Viruses
Viruses are malicious software programs that are

designed to cause disorder to legitimate programs.

These viruses spread using a host from one

computer to another and to interfere with computer

operation. A virus might corrupt or delete data on

your computer, use your e-mail program to spread

itself to other computers, or even erase everything

on your hard disk (Mihai et al., 2005).

 Worm
Worms are another variant of malicious software

programs that are self-replicate computer program.

It uses a network to send copies of itself to other

computers on the network and it may do so without

any user intervention. Worms usually exploit a

known or zero-day vulnerability that allows them

to execute their copies on computers on the same

network (Mihai et al., 2005).

 Trojan Horse

A Trojan horse is non-self-replicating malware that
appears to perform a desirable function for the user

but instead facilitates unauthorized access to the

user's computer system. Nowadays, they are

usually dropped as payloads by computer worms in

order to give the attacker total control of the

victim's PC (Mihai et al., 2005).

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 6, ISSN No. 2455-2143, Pages 85-110
 Published Online October 2020 in IJEAST (http://www.ijeast.com)

87

 Backdoor

As their name implies, backdoor software allows

an attacker to access a machine using an alternative

entry method. Normal users log in through front

doors, such as login screens with user IDs and

passwords. Attackers use backdoors to bypass these
normal system security controls that act as the front

door and its associated locks. Once attackers install

a backdoor on a machine, they can access the

system without using the passwords, encryption,

and account structure associated with normal users

of the machine (Mihai et al., 2005).

 Rootkit

A rootkit is a software system that consists of one

or more programs designed to obscure the fact that

a system has been compromised. An attacker may
use a rootkit to replace vital system files, which

may then be used to hid processes and files the

attacker has installed. Rootkits often modify parts

of the operating system or install themselves as

drivers or kernel modules, depending on the

internal details of an operating system's

mechanisms. Kernel rootkits can be especially

difficult to detect and remove because they operate

at the same level as the operating system itself and

are thus able to intercept or subvert any operation

made by the operating system. Any software such

as antivirus software, running on the compromised
system is equally easily subverted. The

fundamental problem with rootkit detection is that

if the operating system currently running has been

subverted, it cannot be trusted, including to find

unauthorized modifications to itself or its

components (Mihai et al., 2005).

 Spyware

Spyware sneaks into your computer without your

permission. It extract the personal information or

details from the computers. This information is sent
to specific locations without permission of owner

which can be very dangerous. The attacker uses the

spywares to steal the personal information of users

like password or credit card number (Mihai et al.,

2005).

 Adware

Adware usually try to sell something to the users

which automatically appear as pop up window even

if users don’t open these. Normally this program

comes to the systems in the form of the gambling

advertisements and these advertisements are related
to the websites which you open. There will many

windows open and users will not be able to close

these windows in case of adware attack (Mihai et

al., 2005).

2.2 Related work

The first person to introduce Intrusion detection

concept was James Anderson in 1980. To him, he

see intrusion attempt or threat to be potential

possibility of a deliberate unauthorized attempt to

access information, manipulate or render a system

unreliable or unusable (Anderson.J.P, 1980). In the
latter part of 1990, data mining consisting of NIDS

began to gain more attraction. Researchers

suddenly recognized the need for existence of

standardized dataset to train IDS tool. Minnesota

Intrusion Detection System (MINDS) combines

signature based tool with data mining for anomaly

detection. In an early study applying GAs to

intrusion detection, emphasise were based on being

able to continuously learn user behaviour, to keep

track of user drift (Balajinath and Raghavan, 2001).

Similarly to (Balajinath and Raghavan, Neri, 2000)

adopts a distributed GA, REGAL (Giordana and
Neri 1995), to determine patterns of normal

network behaviour. (Leon et al., 2004a, 2004b)

demonstrate the potential of GAs to perform

network based anomaly detection by means of

clustering, which they achieve by incorporating a

niching mechanism. Furthermore, Bankovi´c et al.

2008, proposed a GA over other clustering

algorithms, to obtain more robustness, reduce the

problem of ‘getting stuck’ in local optima and to

exploit the parallel nature of the algorithm. They

utilize the clustering potential of the GA to perform
unsupervised, network based, anomaly detection.

The approach does not require a predefined number

of clusters, such as the popular k-means algorithm,

and new data that is introduced to the cluster model

does not need to be assigned to existing clusters;

instead, new clusters may be created, thus, giving

more flexibility. In a different application, by (Lin

and Wang 2008), a GA is hybridised with k-means

clustering, which allows for the value of k to be

optimised. There are several applications of ACO

based clustering to intrusion detection. Ramos and

Abraham, 2004, apply an unsupervised ant
clustering model, referred to as ACLUSTER, to

network based intrusion detection. They argue that

it is a desirable approach in this domain as the

parallel and distributed nature of the ant model

offers real time online training, and there is no need

for complete retraining. The same benefits are

argued by (Feng et al., 2006), who propose ACO

clustering as a part of an agent system. Other

benefits of their system include that it facilitates

unsupervised and supervised learning, and that it is

self organising. (Feng et al., 2007) later propose a
new ACO based clustering system, hybridised with

a SOM for network based anomaly detection. In

addition Tsang (2005.) improve on an existing ant

clustering model by (Lumer and Faieta 1994), to

better deal with high dimensional data. They adopt

the KDD Cup ’99 data to evaluate the performance

of their ant clustering model, and compare with k-

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 6, ISSN No. 2455-2143, Pages 85-110
 Published Online October 2020 in IJEAST (http://www.ijeast.com)

88

means clustering, SOM, another ant based

clustering technique, and a multiple classifier (from

other studies). Their algorithm obtained the highest

detection rates on R2L and DoS, and second best

for U2R, Probing and Normal. The ACO clustering

system proposed by (Feng et al., 2006), as
mentioned above, was also validated on a small

subset of the KDD Cup ’99 data set, and

outperformed a DT, SVM, LGP (Linear Genetic

Programming), and k-NN. There are several studies

that demonstrate the success of GP for intrusion

detection. (Abraham et al., 2007) and (Hansen et

al., 2007) have both obtained high detection rates

on the KDD Cup ’99 data set. However, both

studies used small subsets of the data, which

prevents direct comparisons with other studies

adopting the full data set. (Abraham et al., 2007)

examined three types of GP algorithms: Linear
Genetic Programming (LGP), Multi-Expression

Programming (MEP), and Gene Expression

Programming (GEP). They found that the different

algorithms obtained better detection rates on

certain classes. For example, MEP obtained the

highest detection rates on U2R and R2L, whilst

LGP detected Probing and DoS intrusions with

higher accuracy. Similarly, (Alan Bivens et al.,

2002) invented an NIDS using classifying self

organizing maps for data clustering. MLP neural

network is an efficient way of creating uniform,
grouped input for detection when a dynamic

number of inputs are present. An ensemble

approach (Srinivas Mukkamala et al., 2004) help to

indirectly combine the synergistic &

complementary features of the different learning

paradigms without any complex hybridization. The

ensemble approach outperforms both SVMs,

MARs, & ANNs. SVMs outperform MARs &

ANN in respect of Scalability, training time

running time & prediction accuracy.

D. Malware Based JavaScript

This document is an example of malware codes

infused in an HTML structure highlighted in color.

Fig 1. example of malware codes infused in an

HTML

From figure 1 above, Note the bottom image,

which claims that the site is “powered by” 123

greetings.com, What one can’t tell from Fiigure 1’s

static screen capture is that the image at the top of

the page flashes the red border and red “x” icon as

an animated .gif image, in an annoying throbbing

look. Clicking on the image or on the “click here”

text link would download two different executable

files.
Unseen to the naked eye is an invisible <iframe>

element that runs a ton of Javascript whose goal is

to load additional software onto a vulnerable PC.

The iframe element delivers a classic “drive-by”

attack, so-called because all actions occur just by

visiting the page, requiring no further action by the

victim.

II. METHODOLOGY

This research comparers the different algorithms of

some machine learning on Intrusion Detection

Systems. The Algorithms are: Naïve Bayes,

Decision Trees (J48), Support Vector Machine

(SVM) and Sequential Model Optimization (SMO).

In view of this assertion, we here give the

theoretical exposition of each model. In the design

stage of this Project, we are going to highlight the

theories of the four (4) Data mining algorithms we

are going to deploy or run on the WEKA software.

A. A Pretty Conception of the Naives Bayes

The naïve Bayesian classifier is based on Bayes

theorem, and is a relatively simple algorithm for

machine learning. The Bayesian classifier has

proved itself, and according to research it has

performed in line with decision tree and neural

network classifiers. The Bayesian classifier

demands a lot of training data in order to be

effective in classification of real data. In Bayes
classification, the probability of a given hypothesis

is calculated to be true given that the Data belong

to a certain class. This method scans through the

dataset the collected dataset and then re-scans as

the case may be in order to re-calculate the

probability to be more or less. It is strictly the work

of an uncertainty as it relates to their Domains.

Let us take for an example an attacker aiming at a

particular enterprise network domain, such an

attacker will either have a positive action when he

gets the target or negative when he failed to
succeed. Here two variables are established:

positive when he hits the target or negative when

he misses it.

B. The Naïve Bayes Model

The Naïve Bayes method is based on the work of

Thomas Bayes (1702-1761). In Bayesian

classification, we have a hypothesis that the given

data belongs to a particular class. We then calculate

the probability for the hypothesis to be true. This is

among the most practical approaches for certain

types of problems. The approach requires only one
scan of the whole data. Also, if at some stage there

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 6, ISSN No. 2455-2143, Pages 85-110
 Published Online October 2020 in IJEAST (http://www.ijeast.com)

89

are additional training data, then each training

example can incrementally increase/decrease the

probability that a hypothesis is correct. Thus, a

Bayesian network is used to model a domain

containing uncertainty

Naïve Bayes is a form of Bayesian model in its
simplistic form. It considers the probability of an

end result given a set of evidences or variables

independently given the end results. Network

Intrusion Design may be liken to an Alarm.

Assume that we have a set of examples that

monitor some attributes such as whether it is

raining, whether an earthquake has occurred etc.

Let us also assume that we know, using the

monitor, about the behavior of the alarm under

these conditions. In addition, having knowledge of

these attributes, we record whether or not a theft

actually occurred. We will consider the category of
whether a theft occurred or not as the class for the

naïve Bayes classifier. This is the knowledge that

we are interested in. The other attributes will be

considered as knowledge that may give us evidence

that the theft has occurred (Mrutyunjaya Panda and

Manas Ranjan Patra, 2007).

A more detail of Car theft scenario can be given

below as enumerated by (Christina Lee, 2007):

Now we will consider an example. Suppose that a

hypothetical car alarm that responds correctly 99%

of the time. The other 1% is divided into two
categories, false positives, and false negatives.

False positives make up all the situations in which

the car alarm goes off, but where there is no

criminal activity occurring. Assume that 1% of the

time that the alarm rings, that this is the case. False

negatives make up all of the situations in which the

car alarm does not go off, but there is an attempted

theft. Assume that this event also makes up 1% of

all cases in which the alarm does not go off. Now,

assume that the probability of criminal activity

occurring with this particular car to be 1% in any

given hour. Over a period of 1 hour, the car is left
unsupervised. The alarm goes off once in this time–

what is the probability that a theft occurred when

the alarm went off? What is the probability that a

theft did not occur when the alarm went off?

One way to approach this problem is to use the

concept of natural frequencies. Natural frequencies

translate the probability into concrete whole

numbers before transferring them back into

probabilities. For example, a probability that a fair

coin gives heads can be thought of as the idea that

out of 1000 cases, 500 will be heads.
Examining the car burglary case, we know that the

probability that a theft occurred is 1% in any hour.

Therefore, in considering the natural frequency, we

can assume that over a period of 10,000 hours, 100

hours will have thefts (since there is a 1%

probability for theft in any hour). This period of

10,000 hours can therefore be divided into two

categories: those that have thefts, and those that do

not. The number of hours having thefts, as stated

earlier is 100. The number of hours not having

thefts is 9,900. Therefore, in the number of hours

having thefts, 100, the car alarm will, on average,

go off 99 times. The other 1 time it will not go off.
In the 9,900 hours in which no thefts occur, the

alarm will go off 99 times. 9,801 times, it will not

go off. Therefore, the total number of hours with

alarms is 198. The total number of hours without

alarms is 9,802. So the probability that a theft

occurred when the alarm went off is 99/198, or

50%. The probability that a theft did not occur

given that the alarm went off is 99/198, also 50%.

Note that despite the fact that the false negatives

only occur 1% of the time, the alarm is nonetheless

incorrect 50% of the time that it goes off due to the

fact that thefts occur much less commonly than
non-thefts.

The above problem can also be expressed as

follows:

Let P(correct) = .98

Let P(alarm|event) = P(falsepos) = .01

Let P(alarm|event) = P(falseneg) = .01

Let P(event) = .01

Therefore,

P(correct|event) = P(falseneg) = .99

P(alarm) =

P(correct|event)×P(event)+P(falsepos)×P(event) =
.99×.01+.01×.99 = .0099+.0099 =

.0198

P(alarm|event) = P(falsepos) = P(alarm|event) = .99

P(event|alarm) = P(alarm|event)×P(event)

P(alarm) = .99×.01

.0198 = .0099

.0198 = .5 (using Bayes’s rule)

P(event|alarm) = P(alarm|event)×P(event)

P(alarm) = .01×.99

.0198 = .5 (using Bayes’s rule) (Christina Lee;

2007)

As can be seen from the above example, the
number of false positives must be reduced to

significantly to prevent the alarm from becoming

more annoying than helpful.

The naïve Bayes classifier works with assumptions.

These further explain why the Probability of one

attribute does not have any effect on the probability

of the other. Given a series of n attributes, the naïve

Bayes classifier makes 2n! Independent

assumptions. Nevertheless, the results of the naïve

Bayes classifier are often correct. (P. Domingos,

and M. J. Pizzani, 1997) examines the
circumstances under which the naïve bayes

classifier performs well and why. It states that the

error is as a result of three factors: training data

noise, bias and variance. Training data noise can

only be minimized by choosing good training data.

The training data must be divided into various

groups by the machine learning algorithm. Bias is

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 6, ISSN No. 2455-2143, Pages 85-110
 Published Online October 2020 in IJEAST (http://www.ijeast.com)

90

the error due to groupings in the training data being

very large. Variance is the error due to those

groupings being too small. nIn the training phase,

the naïve bayes algorithm Compute the

probabilities of a theft given a particular attribute

and then stores this probability. This is repeated for
each attribute. In the testing phase, the amount of

time taken to calculate the probability of the given

class for each example, in the worst case is

proportional to n, the number of attributes.

However, in worst case, the time taken for testing

phase is same as that for the training phase. Figure

3.1 below shows the framework for a Naïve

Bayesian model to perform intrusion detection.

Fig. 2 the Framework of An Intrusion Detection

Model

Bayes networks are among the most widely used

graphical models to represent and handle uncertain

information. They are specified by two main

components:

A graphical component composed of a directed

acyclic graph (DAG) where vertices represent

events and edges are relations between events.

A numerical component is consisting of different

links in the DAG by a conditional probability

distribution of each node in the context of its

parents.

As simple as Naïve Bayes networks, they are

consisting of DAGs with only one root node which

is called a Parent. The Parent represents the

unobserved node with her several Children

corresponding to observed nodes, with strong

assumption of independence among Child nodes in

the context of their parent. This thus means in the

presence of training set we can only compute the
conditional probabilities since the structure is

unique.

Once the network is quantified, it is possible to

classify any new object giving its attributes’ values

using the bayes’ rule express as:

(P Ci/A) = 3.1

Where Ci is a possible value in the session class and

A is the total evidence on attributes the nodes. The

evidence A can be distributed into pieces of

evidence, for example a1, a2… an relative to the

attributes A1, A2, ……., An, respectively. Since

naïve baye’s work under the assumption that these

attributes are independent giving the parent node c,

their combine probability is obtained as follows:

(P Ci/A)=

3.2

Note that there is no need to explicitly compute the

denominator P(A) since it is determine by

normalization condition.

C. Decision Trees.

Decision trees are Machine learning algorithm

which comprise of three major elements or

components. These components are as stated below

(G.V Nadiammai, 2003):

1. Decision node which specify a test
attribute

2. Edge or a branch, corresponding to the

one of the possible attributes values with

the best attributes outcomes.

3. Leaf, which is also known as an answer

node contains the class to which the object

belongs.

A decision tree is built in two phases:

1. Building the tree: Based on a given

training set, a decision tree is built. It

consists of selecting for each decision

node the appropriate test attribute and also

to define the class labeling each leaf.

2. The second one is classification, which is

done in order to classify a new instance. In

order to actualize this, we begin by the
root of the decision tree, after which we

test the attribute specified by the node.

The result is allowed to move down the

tree branch relative to the attribute value

of the given instance. It is then allow to be

repeated until a leaf is located. The

instance is then classified in the same

class as the characterized Leaf.

ID3 and and C4.5 algorithms (Quinlan, J.R, 1993)

where among the earliest and popular work in the

construction of decision trees and it well known

applications in the classification world. These

algorithms were use to built a model from the root

Dataset

Pattern Building

Detector

Alerts

Network Traffic

Pre-processing

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 6, ISSN No. 2455-2143, Pages 85-110
 Published Online October 2020 in IJEAST (http://www.ijeast.com)

91

to the Leaves through the use of the following

parameters:

The attribute selection measure use the

discriminative of each attribute over classes in

order to choose the best as the root of the decision

tree. In order words, this measure should consider

the ability of each attribute, Ak to determine

training objects’ classes. Based on the gain ratio

(Quinlan, J.R, 1993) and the Shannon entropy; an

Attribute Ak and a set of objects T is define as

follows:

Gain(T,Ak)=Info(T)–InfoAk(T) 3.3

where

Info(T)=- 3.4

Info Ak (T) =

 3.5

And denotes the number of objects

in the set T belonging to the class Ci and TAk
ak is

the subset of the objects for which the attribute Ak

has the value ak (belonging to the domain of Ak

Denoted D(Ak)).

Then split Info (Ak) is define as the information

content of the attribute Ak as in (Quinlan, J.R,
1993):

Split Info(T,Ak) =

 - 3.6

So, the gain ratio is the information gain calibrated

by split Info:

Gainratio(T,Ak)= 3.7

The partitioning strategy having as objective to

divide the current training set by taking into

account the selected test attribute. The stopping

criteria, dealing with the condition (s) of stopping

the growth of a part of the decision tree or even all

the decision tree. In other words, they determine

whether or not a training subset will be further

divided.

D. Support Vector Machines (SVM)

Several extensions have been proposed to make
SVMs suitable to deal with multi-class

classification problems. Although none of the

multi-class approaches known in the literature is

accepted as a solution to generic problems, SVMs

techniques are nowadays mature enough to be

applicable to many classification problems (Chen

et al., 2005).

The SVM approach transforms data into a feature

space F that usually has a huge dimension. It is

interesting to note that SVM generalization

depends on the geometrical characteristics of the

training data, not on the dimensions of the input
space. Training a support vector machine leads to a

quadratic optimization. Problem with bound

constraints and one linear equality constraint.

Vapnik (Joachims, 1998) shows how training a

SVM for the pattern recognition problem leads to

the following quadratic optimization problem

(Buntod et al., 2010):

Minimize:

W(a)=- 3.8

Subject to

 3.9

Where:

l = the number of training examples

a = A vector of l variables and each component i a

corresponds to a training example (x i , y i)

The solution of (1) is the vector a* for which (1) is
minimized and (2) is fulfilled.

Intrusion detection using support vector machines

are being researched in universities (Harley

Kozushko, 2003). The construction of SVM

intrusion detection systems consists of three

phases. The first is preprocessing, which uses

automated parsers to process the randomly selected

raw TCP/IP dump data into machine readable form.

The second phase consists of training SVMs on

different types of attacks and normal data. The data

have 42 input features and fall into two categories:

normal (+1) or attack (-1). The SVMs are trained
with normal and intrusive data. The final phase

involves measuring the performance on the testing

data. In theory, SVMs are learning machines that

plot the training vectors in high dimensional feature

space, labeling each vector by class. Furthermore,

SVMs classify data by determining a set of support

vectors, which are members of the set of training

inputs that outline a hyper plane in feature space.

The SVMs are based on the concept of structural

risk minimization, which recognizes true error on

unseen examples. The process to which the data is
classified involves partitioning the data into two

classes: normal and attack, where attack represents

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 6, ISSN No. 2455-2143, Pages 85-110
 Published Online October 2020 in IJEAST (http://www.ijeast.com)

92

a collection of 22 different attacks belonging to the

four classes, either: DOS attacks, unauthorized

access from a remote machine, unauthorized access

to a local super user privileges, or surveillance and

other probing. The object is to separate normal (1)

and intrusive (-1) patterns. The SVMs are trained
with normal and intrusive data.

The primary advantage of SVMs is binary

classification and regression which implies low

expected probability of generalization errors;

however there are many more advantages. Another

advantage is speed as real-time performance is of

primary importance to intrusion detection systems.

In addition, the SVMs are very scalable. They are

relatively insensitive to the number of data points

and the classification complexity does not depend

on the dimensionality of feature space. A final

advantage is that because attack patterns are
dynamic in nature, SVM can dynamically update

training patterns.

E. Support Vector Classifier Algorithm using

Sequential Minimal Optimization (SMO)

The math model of support vector classifier can be

considered as a quadratic problem with some

constraints. Traditional algorithms always involve

matrix operation so, the expenses of saving and

computing are large; especially the large scale data
sets (C. J. C. Burges, 1998). The data sets we chose

for our intrusion detection experiments are large, so

after analysis and comparison we choose

Sequential Minimal Optimization (SMO) algorithm

as one of the Algorithm used. It was brought up by

Platt in 1998. Its foundation is aimed to decompose

a large quadratic problem to a serial of minimal

quadratic problems.

The SMO algorithm is derived by taking the idea of

the decomposition method to its extreme and

optimizing a minimal subset of just two points at

each iteration. The power of this technique resides
in the fact that the optimization problem for two

data points admits an analytical solution,

eliminating the need to use an iterative quadratic

programme optimizer as part of the algorithm

(Nello Cristianini, John Shawe-Taylor, 2005).

The requirement that the condition

 is enforced throughout the

iterations implies that the smallest number of
multipliers that can be optimized at each step is 2:

whenever one multiplier is updated, at least one

other multiplier needs to be adjusted in order to

keep the condition true.

At each step SMO chooses two elements αi and αj

to jointly optimize, finds the optimal values for

those two parameters given that all the others are

fixed, and updates the α vector accordingly. The

choice of the two points is determined by a

heuristic, while the optimization of the two

multipliers is performed analytically. Despite

needing more iteration to converge, each iteration

uses so few operations that the algorithm exhibits

an overall speed-up of some orders of magnitude.

Besides convergence time, other important features
of the algorithm are that it does not need to store

the kernel matrix in memory, since no matrix

operations are involved, that it does not use other

packages, and that it is fairly easy to implement.

Notice that since standard SMO does not use a

cached kernel matrix, its introduction could be used

to obtain a further speed-up, at the expense of

increased space complexity.

1. Population of the Study

In our work, the KDDCUP 99 was downloaded and

filtered according to the type of Attacks as shown

in the Table and figure. The KDDCUP’99 is about

1,048,575 connections which make it very bulky;

to this end we again relied on the refined Dataset

by (Mahbod Tavallaee et al., 2009) and posted on

the website http://nsl.cs.unb.ca/NSL-KDD on

March 2009. The website contains the following

Datasets: 11850 connections representing 21% of
test data, 22544 connections representing the whole

of test data, 125973 connections of train data set

and 25192 representing 20% train data. We carry

out the experiments on the train and test data using

four Data mining algorithms on Weka software.

2. Sampling Procedure

The Datasets taken from section 3.3 above were
prepared and ran on WEKA software. For each of

train or test dataset we conducted a four (4) data

mining algorithms on it. When we ran each of the

algorithms, a collected the output on our System is

done and on the same Machine we again collect the

ROC graphs for proper analysis.

3. Instrumentation

In order to perform this experiment we use the

WEKA (Waikato environment for knowledge

analysis). This software train the data collected
from the KDDCup ’99 after which the information

obtained from the training was analyzed with the

use of MALAP9.0. The experiment was carried out

with the use of a windows XP service pack 3

Operating System Software running on an Intel ®

Core™2 duo processor CPU T7100 1.8 GHz 2.0

GB of RAM.

III. DATA COLLECTION PROCEDURE

A. KDDCup ’99 Data Collection

Network Attacks has become a major phenomenon

in the field of computing and Information

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 6, ISSN No. 2455-2143, Pages 85-110
 Published Online October 2020 in IJEAST (http://www.ijeast.com)

93

Technology. Security has virtually become a

confidential issue for any organization and as such

Organizations conceal this piece information as

classified. Since it is very difficult getting Attack

information of any organize enterprise network, we

strictly and wholly relied on the available samples
collected by NSL- KDD. Before NSL KDD data

set most of the investigators or researchers used

KDD’99 data set for the investigation or detection

of the intrusion, but the outcome of the KDD’99

data could not satisfy to the investigator or

researchers. There are many problems in KDD’99

data set which has overcome by NSL KDD data set

(Mahbod Tavallaee et al., 2009). The NSL-KDD

data set has the following advantages over the

original KDD data set:

1. NSL KDD data set does not include redundant

records in the train set, so the classifiers will not be
biased towards more frequent records.

2. There are no duplicate records in the proposed

test sets; therefore, the performance of the learners

is not biased by the methods which have better

detection rates on the frequent records

3. The number of selected records from each

difficulty level group is inversely proportional to

the percentage of records in the original KDD data

set. As a result, the classification rates of distinct

machine learning methods vary in a wider range,

which makes it more efficient to have an accurate
evaluation of different learning techniques.

4. The number of records in the train and test sets is

reasonable, which makes it affordable to run the

experiments on the complete set without the need

to randomly select a small portion. Consequently,

evaluation results of different research works will

be consistent and comparable

The website (http://nsl.cs.unb.ca/NSL-KDD)

contains the following Datasets: 11,850

connections representing 21% of test data, 22544

connections representing the whole of test data,

125,973 connections of train data set and 25,192
representing 20% train data. A connection is a

sequence of TCP packets starting and ending at

some well defined times, between source IP

address to a target IP address with some well

defined protocol. Each connection is categorized as

normal, or as an attack, with one specific attack

type. The training dataset is classified into five

subsets namely Denial of service attack, Remote

to Local attack, User to Root attack, Probe

attacks and normal data. Each record is

categorized as normal or attack, with exactly one
particular attack type.

B. Weka program data collection

WEKA is open source software that was developed

using Java at Waikato University and it is available

on the website

“http://www.cs.waikato.ac.nz/ml/weka/.”

For each machine learning algorithm, the algorithm

was always trained with the training data, and

testing was performed with either the testing data

or the training data. In addition, the option to
output detailed statistics was selected and to output

the model. The model consists of all the

information necessary to reproduce the trained

machine learning data structure (e.g. the decision

tree, naive bayes, SMO or SVM trained on the 20%

dataset). The option -Xmx1024m was used to

increase the memory available to the JRE to 1024

MB for SVM and SMO. Naive Bayes algorithm

outputs the results of training and testing, as well as

the model for the naive Bayes. Besides the options

mentioned above, the Weka naive Bayes and J48

decision tree algorithms were run using the
defaults, and no other options were selected for

them.

C. Data Analysis Techniques.

The data files used are from the University of

California, Irvine Knowledge Discovery and Data

Mining (UCI KDD) website

(http://www.kdd.ics.uci.edu/databases/kddcup99/ta

sk.html) as amended by (Mahbod Tavallaee et al.,

2009). The data files give the necessary

information to create and train the algorithms. The
kddcup names file lists the class types, including

’normal.’ which signifies that no attack is in

progress. The attack types are back, buffer_

overflow, ftp_write, guess_passwd, imap, ipsweep,

land, loadmodule, multihop, neptune, nmap,

normal, perl, phf, pod, portsweep, rootkit, satan,

smurf, spy, teardrop, warezclient, and warezmaster.

In the test data, the attacks mentioned above are

present with other novel attacks, which include:

xsnoop, xterm, Apache2, httptunnel, mailbomb,

mscan, named, processtable, ps, saint, sendmail,

snmpgetattack, snmpguess, sqlattack, udpstorm,
worm and xlock. Table 3.1 shows the four classes

of attacks and the different classifications they

belong to.

While there are a large variety of attacks, most of

these attacks above fit into one of four categories

(Christina Lee, 2007):

http://www.kdd.ics.uci.edu/databases/kddcup99/task.html
http://www.kdd.ics.uci.edu/databases/kddcup99/task.html

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 6, ISSN No. 2455-2143, Pages 85-110
 Published Online October 2020 in IJEAST (http://www.ijeast.com)

94

Table 1. Different types of Attacks and their

classes

It is important
to note that the test data is not from the same

probability distribution as the training data, and it

includes specific attack types not in the training

data which make the task more realistic. Some

intrusion experts believe that most novel attacks are

variants of known attacks and the signature of

known attacks can be sufficient to catch novel

variants (Mahbod Tavallaee et al., 2009)

The names file also lists the attribute names. Each

attribute name states whether it is a continuous or

symbolic variable. A symbolic variable has a finite
number of possible values and can be completely

enumerated. A continuous variable cannot be

enumerated.

Each example uses forty-one attributes, and the

testing data contains 23 different classes. The

attributes are as given in table 3.2 to 3.4

Table 2: Basic Features of individual TCP connections
feature name Description Type

duration length (number of seconds) of the
connection

Continuous

protocol type type of protocol, e.g. tcp, udp, etc Symbolic

service network service on the
destination, e.g., http, telnet, etc.

Symbolic

flag normal or error status of the
connection

Symbolic

src_bytes number of data bytes from source

to destination

Continuous

dst_bytes number of data bytes from
destination to source

Continuous

land 1 if connection is from/to the
same host/port; 0 otherwise

Symbolic

wrong_fragment number of “wrong” fragments Continuous

urgent number of urgent packets Continuous

Table 3: Content features suggested by domain
knowledge

feature name Description

hot number of “hot” indicators

num_failed_logins number of failed login attempts

logged_in 1 if successfully loggin in, 0 otherwise

num_compromised number of “compromised” conditions

root_shell 1 if root shell obtained, 0 otherwise

su_attempted 1 if “su root” command attempted, 0 otherwise

num_root number of “root” accesses

num_file_creations number file creation operations

num_shells number of shell prompts

num_access_files number of operations on access control files

num_outbound_cmds number of outbound commands in an ftp session

is_hot_login 1 if the login belongs to the “hot” list, 0 otherwise

is_guest login 1 if the login is a “guest” login, 0 otherwise

Table 4: A two-second window where various

traffic features were computed
feature name Description Type

count # of connections to the same host as

this one in the past two seconds

Continuous

 Note: the following features refer to

these same-host connections

serror_rate % of connections that have “SYN”

errors

Continuous

rerror_rate % of connections that have “REJ”

errors

Continuous

same_srv_rate % of connections to the same

service

Continuous

diff_srv_rate % connections to different services Continuous

srv_count # of connections to the same service

as this one in the past two seconds

Continuous

 Note: The following features refer

to these same-service connections

srv_serror_rate % of connections that have “SYN”

errors

Continuous

srv_rerror_rate % of connections that have “REJ”

errors

Continuous

srv_diff_host_rate % of connections to different hosts Continuous

The NSL –KDDCup’2009 data file lists the value

of the class and the value of the attributes. The

testing data set contains 22,543 examples. These

examples contain 9,711 normal items and 12,832

attacks. Therefore, this data is most likely atypical

Attack Class(4

main Classes)

Different Attacks (22

misused attacks)

Denial of

Service(DOS)

back, land, neptune,

pod, smurt, teardrop

Remote to

Local(R2L)

ftp_write,

guess_passwd, imap,

multihop, phf, spy,

warezclient,

warezmaster

User to

Root(U2R)

buffer_overflow, perl,

loadmodule, rootkit

Probe ipsweep, nmap,

portsweep, satan

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 6, ISSN No. 2455-2143, Pages 85-110
 Published Online October 2020 in IJEAST (http://www.ijeast.com)

95

because it contains more attacks than normal data.

The attack connections make up 56.92% of the

dataset. The training dataset contains 125,972

items. There are 67,342 normal connections and

58,630 attack connections. The attacks make up

46.54% of the dataset. All the datasets has 41
attributes. Fig 4.18 shows the datasheet containing

this analysis.

For the Weka algorithms, the dataset was converted

to arff format, which is a standard data mining

format used by Weka. This was accomplished by

first converting the file to csv format using

Microsoft excel, The CSV format is a standard

comma-separated format. The version of the csv

format read by WEKA has a row of entries at the

top that lists the name of each attribute. In this step,

a line with the feature names as given above was

added, along with the classification name. Then the
lines were processed using only the classes

’normal’ and ’anomaly’ (i.e. any class that wasn’t

normal was changed to read ’anomaly’). Next, the

Weka CSVLoader was used to convert both the

training and the testing dataset (now in csv format)

to arff format. The two arff headers were manually

compared and merged to form a single arff header

with all the possible attribute values from both the

testing and the training phase (Weka requires that

the arff headers for the testing and training data

match).

D. Neural Network Java Codes

Implementation for Intrusion Detection.

This work is strictly on the application of WEKA

for comparison of the IDS algorithms. However,

we are obliged to give a simple and workable code

program in Java that could be applied in for any

IDS using the neural networks, thus, code is given

in Appendix A.

he Methods are based on the following machine

and data mining algorithms models: using WEKA

software

1. Naïve Bayesian, 2.

 Support Vector Machines (SVM)

3. Decision Trees (J48) and 4.

 Sequential Minimal Optimization (SMO).

E. Research Questions

The question we will answer in this study is; which

is the best data mining or Machine learning

Techniques among the four to be studied for the
detection of the intrusion, such as:

1. Denial of Service (DoS), 2. Remote to

Local (R2L),

3. User to Root (U2R) and 4. Probe ?

The question will be answered in terms of

performance, efficiency and scalability in order to

make an appropriate conclusion in chapter five.

Network Intrusion Detection System: is a

specialized tool that knows how to read and

interpret the contents of log files from routers,

firewalls, servers, and other network devices so as

to compare patterns of activity, traffic, or behavior

to indentify and separate the normal from the

unauthorized traffic.

Intrusion Prevention System: is a tool deployed

to preventing or averting the unauthorized traffic

into any Computer System or Network.

Data Mining: is defined as the process of

discovering patterns in data. The process must be

automatic or (more usually) semiautomatic. The

patterns discovered must be meaningful in that they

lead to some advantage, usually an economic one.

Machine Learning: is the prediction, based on

known properties learned from the training data or

is a scientific discipline concerned with the design

and allow computers to evolve behaviors based on

empirical data such as from sensor data or

database.

False positive: is when you have a specific

vulnerability in your program but in fact you don’t

or when an IDS sound an alarm signifying

intrusion but in really there is no any intrusion.

True positive: when an IDS sound an alarm when
really there is an unauthorized traffic in the

network or System.

Receiver Operating Characteristic (ROC):
curves identify how the true positives vary with the

false positives. ROC curves show how well a test

does at distinguishing between classes without

taking the relative frequency of the classes into

account.

Support Vector Machines (SVM): transforms

data into a feature space F that usually has a huge

dimension. The algorithms generalization depends

on the geometrical characteristics of the training

data, not on the dimensions of the input space.

Sequential Minimal Optimization (SMO) is

aimed to decompose a large quadratic problem to a

serial of minimal quadratic problems.

IV. RESULTS AND DISCUSSIONS

A. Introduction

This works compares four algorithms of Machine

Learning models; viz: Naives Bayes, Decision trees

(J48), Support Vector machines (SVN), and

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 6, ISSN No. 2455-2143, Pages 85-110
 Published Online October 2020 in IJEAST (http://www.ijeast.com)

96

Sequential Machine optimization (SMO). These

pragmatic models were evaluated and compared

using data sets as obtained from NSL-KDDCup.

This method takes into consideration the relative

sizes of the classes to each other in the dataset. This

allows the user of the Intrusion Detection Systems
(IDS) to evaluate how well they will predict the

classes given the distribution of the dataset. In

these comparative data analyses, we plotted various

graphs and charts to analyze the results of the

various models which give us experimental

parameters as obtained in section (4.4). The

itemized below are vital in our simulations

undertakings:

1. Time taken to built the results of each

Algorithms;

2. The Kappa Statistics of the Algorithms;

3. Area under the curve(AUC);
4. False positives

5. Receiver Operating Characteristics(ROC)

Graphs; and

6. Experimenter results of train and test data

on WEKA.

The simulated outputs for the aforementioned

models were executed using open source software

named WEKA. The output parameters were

collected and all the various parameters filtered

into various tables as shown. In order to give visual

conception, we carried out various computational
analyses to give us semblance of graphical

constructions that are related to some parameters

(time, kappa characteristics, ROC etc.) of our

experiments.

B. Visualization of Experimental works

We give clear visualization for our experiments as

followings:

Receiver Operating Characteristics (ROC)

Our Data sets were acquired from 1998 DARPA.

Using this huge data set, we carried out various

evaluations which enable us to obtain various
patterns of intrusion detection parameters.

Detected results were compared with the total

number of network sessions to give two summary

measures of an IDS’s performance: Detection rate

(intrusions detected divided by intrusions

attempted) and false alarm rate (false alarms

divided by total network sessions). These summary

measures were taken as an estimate of one point on

the IDS’s receiver operating characteristic (ROC)

curve which is hereunder explained. A ROC curve

is a plot of detection probability of positive
detection versus false alarm detection probability.

It shows the probability of detection provided by

the IDS at a given false alarm probability.

Alternatively, it shows the false alarm probability

provided by the IDS at a given probability of

detection.

Receiver Operating Characteristic (ROC) curves;

identify how the true positives vary with the false

Positives. The area under these curves signifies

how well the test used can distinguish between the

examples. The more the example classes overlap

relative to the test, the less the area under the ROC
curve will be. ROC curves show how well a test

does at distinguishing between classes without

taking the relative frequency of the classes into

account. The authors have observed that in the

ROC curves created by the Decision Tree in

WEKA, there are few points. This is most likely

because many of the decision tree branches are

discrete. Whether an edge is followed is therefore a

binary decision (e.g. something either is or isn’t an

ftp connection).On continuous valued attributes,

the numbers can be changed to affect the number of

examples classified as normal and as an attack).
The followings are the realities of what ROC is and

it uses:

1. The ROC curve allows us to see, in a

simple visual display, how sensitivity and

specificity vary as our threshold varies

2. The shape of the curve also gives us some
visual clues about the overall strength of

association between the underlying test

statistic

3. Area under curve of ROC represent the

total area of the grid represented by an

ROC curve is 1, since both TPR and FPR

range from 0 to 1

4. The portion of this total area that falls
below the ROC curve is known as the

area under the curve(AUC)

5. An AUC of 1.0 would mean that the test

statistic could be used to perfectly

classified between cases and controls

6. An AUC of 0.5 (reflected by the diagonal
45° line) is equivalent to simply guessing

7. The following define the values of AUC

and their corresponding interpretations:

 .90-1.0 = excellent

 .80-.90 = good

 .70-.80 = fair

 .60-.70 = poor

 .50-.60 = fail
 <.50 is worse than guess work

C. The kappa statistic
The Kappa statistics measures the agreement of

prediction with the true class. 1.0 signifies

complete agreement. For the example taken from

fig. 4.1 the Kappa characteristics is 0.7906

D. The confusion matrix

 The confusion matrix is more commonly named

contingency table. In our case we have two classes,

and therefore a 2x2 confusion matrix, the matrix

could be arbitrarily large. The number of correctly
classified instances is the sum of diagonals in the

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 6, ISSN No. 2455-2143, Pages 85-110
 Published Online October 2020 in IJEAST (http://www.ijeast.com)

97

matrix; all others are incorrectly classified (class

"a" gets misclassified as "b" exactly twice, and

class "b" gets misclassified as "a" three times.

From fig.4.1 the Matrix is as given below.

 === Confusion Matrix ===

 a b <-- classified as

 12272 1177 | a = normal

1445 10298 | b = anomaly

E. The True Positive (TP)
The True Positive (TP) rate is the proportion of

examples which were classified as class x, among

all examples which truly have class x, i.e. how

much part of the class was captured. It is equivalent

to Recall. In the confusion matrix, this is the

diagonal element divided by the sum over the

relevant row.

Anomalyfor

andnormalfor
rowrelevanttheoversum

ElementDiagonal
TP

877.0
11743

10298

;912.0
13449

12273

F. The False Positive (FP)
The False Positive (FP) rate is the proportion of

examples which were classified as class x, but

belong to a different class, among all examples
which are not of class x. In the matrix, this is the

column sum of class x minus the diagonal element,

divided by the rows sums of all other classes.

Anomalyfor

Normalfor
classesallofsumsRows

ElementDiagonalsumColumn
FP

088.0
13449

1177

;123.0
11743

1445

G. The Precision
The Precision is the proportion of the

examples which truly have class x among

all those which were classified as class x.

In the matrix, this is the diagonal element

divided by the sum over the relevant

column.

Anormalfor

andNormalfor
Columnrelevanttheoverumo

ElementDiagonal
PRECISION

897.0
11475

10298

;895.0
13717

12272

H. The F-Measure

The F-Measure is simply 2*Precision*Recall/

(Precision+ Recall), a combined measure for

precision and recall

I. Research Question/Hypothesis Analysis

There are so many potential Stakeholders for the

results of quantitative evaluations of IDS accuracy.

Acquisition managers need such information to

improve the process of system selection, which is

too often based only on the claims of the vendors

and limited-scope reviews in trade magazines.

Security analysts who review the output of IDSs

would like to know the likelihood that alerts will

result when particular kinds of attacks are initiated.
Finally, Research & Development program

managers need to understand the strengths and

weaknesses of currently available systems so that

they can effectively focus research efforts on

improving systems, and measure their progress.

Therefore the security of any enterprise network

become a concern of any Systems Administrator as

Intruders over time invades and targeted networks

of interest. Attempts have been made to get a

solution to this security menace. Of interest to us in

this research is to Compare and get a more suitable

Data mining techniques that could be used in the
Analysis of NSL-KDDCUP data and other related

intrusion detection experiments. We apply the data

set as obtained from NSL- KDDCUP’99 for our

research because we lack the necessary equipment

to generate our own experimental works; which is a

ban of all researchers will experience in Nigeria for

lack of effective network Laboratories. Data

collected for experimentations for training set

normally take a long period of time. This data so

collected are use for training before we latter have

data for testing abnormalities intrusions; thus
acquire abnormal detects. Significant results of

training are hereby given in Section 4.4, below.

V. RESULTS

List of Results Tables Showing Tabulated

Parameters Taken From Weka Software Output

Time taken to build model: 1.66 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 22570

89.5919 %

Incorrectly Classified Instances 2622

10.4081 %

Kappa statistic 0.7906

Mean absolute error 0.1034
Root mean squared error 0.3152

Relative absolute error 20.7817 %

Root relative squared error 63.1897 %

Coverage of cases (0.95 level) 90.9654 %

Mean rel. region size (0.95 level) 51.2385 %

Total Number of Instances 25192

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision

Recall F-Measure ROC Area Class

 0.912 0.123 0.895

0.912 0.903 0.968 normal

 0.877 0.088 0.897
0.877 0.887 0.963 anomaly

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 6, ISSN No. 2455-2143, Pages 85-110
 Published Online October 2020 in IJEAST (http://www.ijeast.com)

98

Weighted Avg. 0.896 0.106 0.896

0.896 0.896 0.966

=== Confusion Matrix ===

 a b <-- classified as

 12272 1177 | a = normal

 1445 10298 | b = anomaly
Fig 4.1 An Example of an output for Naïve

Bayesian model

TABLEB1: 42 Attributes Naïve Bayes train data

Time taken to build model: 1.59 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 18200

80.731 %

Incorrectly Classified Instances 4344

19.269 %

Kappa statistic 0.623
Mean absolute error 0.1924

Root mean squared error 0.4371

Relative absolute error 39.2297 %

Root relative squared error 88.2712 %

Coverage of cases (0.95 level) 81.1657 %

Mean rel. region size (0.95 level) 50.3903 %

Total Number of Instances 22544

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision

Recall F-Measure ROC Area Class

 0.95 0.301 0.705
0.95 0.809 0.958 normal

 0.699 0.05 0.949

0.699 0.805 0.949 anomaly

Weighted Avg. 0.807 0.158 0.844

0.807 0.807 0.953

=== Confusion Matrix ===

 a b <-- classified as

 9225 486 | a = normal

 3858 8975 | b = anomaly

TABLEB2: 42 Attributes Naïve Bayes for 20

percent test data
Time taken to build model: 0.78 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 7783

65.6793 %

Incorrectly Classified Instances 4067

34.3207 %

Kappa statistic 0.2798

Mean absolute error 0.3343

Root mean squared error 0.562

Relative absolute error 112.4401
%

Root relative squared error 145.7894

%

Coverage of cases (0.95 level) 73.5527

%

Mean rel. region size (0.95 level) 55.4684 %

Total Number of Instances 11850

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision

Recall F-Measure ROC Area

Class

 0.83 0.382 0.326
0.83 0.468 0.848 normal

 0.618 0.17 0.943

0.618 0.747 0.844 anomaly

Weighted Avg. 0.657 0.208 0.831

0.657 0.696 0.845

=== Confusion Matrix ===

 a b <-- classified as

 1787 365 | a = normal

 3702 5996 | b = anomaly

TABLEB3: 42 Attributes for train data using

trees – j48
Time taken to build model: 13.55 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 25081

99.5594 %

Incorrectly Classified Instances 111

0.4406 %

Kappa statistic 0.9911

Mean absolute error 0.0064

Root mean squared error 0.0651

Relative absolute error 1.2854 %
Root relative squared error 13.059 %

Coverage of cases (0.95 level) 99.6229 %

Mean rel. region size (0.95 level) 50.2997 %

Total Number of Instances 25192

=== Detailed Accuracy By Class ===

 TP Rate FP Rate

Precision Recall F-Measure ROC Area Class

 0.996 0.004 0.996

0.996 0.996 0.998 normal

 0.996 0.004 0.995

0.996 0.995 0.998 anomaly

Weighted Avg. 0.996 0.004 0.996
0.996 0.996 0.998

=== Confusion Matrix ===

 a b <-- classified as

 13389 60 | a = normal

 51 11692 | b = anomaly

TABLEB4: 42 attributes for test data using

trees -j48

Number of Leaves : 500

Size of the tree : 590

Time taken to build model: 4.05 seconds
=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 11509

97.1224 %

Incorrectly Classified Instances 341

2.8776 %

Kappa statistic 0.9022

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 6, ISSN No. 2455-2143, Pages 85-110
 Published Online October 2020 in IJEAST (http://www.ijeast.com)

99

Mean absolute error 0.0389

Root mean squared error 0.1552

Relative absolute error 13.1002 %

Root relative squared error 40.2591 %

Coverage of cases (0.95 level) 98.557 %

Mean rel. region size (0.95 level) 53.0338 %
Total Number of Instances 11850

=== Detailed Accuracy By Class ===

 TP Rate FP Rate

Precision Recall F-Measure ROC Area Class

 0.908 0.015

0.932 0.908 0.92 0.971 normal

 0.985 0.092 0.98

0.985 0.982 0.971 anomaly

Weighted Avg. 0.971 0.078

0.971 0.971 0.971 0.971

=== Confusion Matrix ===

 a b <-- classified as
 1953 199 | a = normal

 142 9556 | b = anomaly

TABLEB5: 42 attributes for train data using

libsvm

Test mode: 2-fold cross-validation

=== Classifier model (full training set) ===

LibSVM wrapper, original code by Yasser EL-

Manzalawy (= WLSVM)

Time taken to build model: 1234.28 seconds

=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances 23686

94.0219 %

Incorrectly Classified Instances 1506

5.9781 %

Kappa statistic 0.8789

Mean absolute error 0.0598

Root mean squared error 0.2445

Relative absolute error 12.0113%

Root relative squared error 49.0128%

Coverage of cases (0.95 level) 94.0219%

Mean rel. region size (0.95 level) 50%
Total Number of Instances 25192

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision

Recall F-Measure ROC Area Class

 0.999 0.128 0.9

0.999 0.947 0.936 normal

 0.872 0.001 0.999

0.872 0.932 0.936 anomaly

Weighted Avg. 0.94 0.068 0.946

0.94 0.94 0.936

=== Confusion Matrix ===
 a b <-- classified as

 13442 7 | a = normal

 1499 10244 | b = anomaly

TABLEB6: 42 attributes for train data using

libsvm

=== Classifier model (full training set) ===

LibSVM wrapper, original code by Yasser EL-

Manzalawy (= WLSVM)

Time taken to build model: 293.98 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 10802
91.1561 %

Incorrectly Classified Instances 1048

8.8439 %

Kappa statistic 0.6457

Mean absolute error 0.0884

Root mean squared error 0.2974

Relative absolute error 29.7488%

Root relative squared error 77.1396%

Coverage of cases (0.95 level) 91.1561%

Mean rel. region size (0.95 level) 50%

Total Number of Instances 11850

=== Detailed Accuracy By Class ===
 TP Rate FP Rate Precision

Recall F-Measure ROC Area Class

 0.551 0.008 0.936

0.551 0.693 0.771 normal

 0.992 0.449 0.909

0.992 0.948 0.771 anomaly

Weighted Avg. 0.912 0.369 0.914

0.912 0.902 0.771

=== Confusion Matrix ===

 a b <-- classified as

 1185 967 | a = normal
 81 9617 | b = anomaly

TABLEB7: 42 attributes for test data using

function SMO

Time taken to build model: 523.19 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 10880

91.8143 %

Incorrectly Classified Instances 970

8.1857 %

Kappa statistic 0.6868
Mean absolute error 0.0819

Root mean squared error 0.2861

Relative absolute error 27.5347%

Root relative squared error 74.2135%

Coverage of cases (0.95 level) 91.8143%

Mean rel. region size (0.95 level) 50%

Total Number of Instances 11850

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision

Recall F-Measure ROC Area Class

 0.619 0.016 0.898
0.619 0.733 0.802 normal

 0.984 0.381 0.921

0.984 0.952 0.802 anomaly

Weighted Avg. 0.918 0.314 0.917

0.918 0.912 0.802

=== Confusion Matrix ===

 a b <-- classified as

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 6, ISSN No. 2455-2143, Pages 85-110
 Published Online October 2020 in IJEAST (http://www.ijeast.com)

100

 1333 819 | a = normal

 151 9547 | b = anomaly

TABLEB8: 25 attributes Naïve Bayes train data

Time taken to build model: 6.72 seconds

=== Stratified cross-validation ===

=== Summary ===
Correctly Classified Instances 24234

96.1972 %

Incorrectly Classified Instances 958

3.8028 %

Kappa statistic 0.9233

Mean absolute error 0.0411

Root mean squared error 0.1822

Relative absolute error 8.2601 %

Root relative squared error 36.5231 %

Coverage of cases (0.95 level) 97.7612 %

Mean rel. region size (0.95 level) 52.4571 %

Total Number of Instances 25192
=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision

Recall F-Measure ROC Area Class

 0.987 0.067 0.944

0.987 0.965 0.996 normal

 0.933 0.013 0.985

0.933 0.958 0.996 anomaly

Weighted Avg. 0.962 0.042 0.963

0.962 0.962 0.996

=== Confusion Matrix ===

 a b <-- classified as
 13277 172 | a = normal

 786 10957 | b = anomaly

TABLEB9: 25 Attributes Decision Trees-J48 for

train data

Number of Leaves: 262

Size of the tree: 314

Time taken to build model: 7.41 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 25070

99.5157 %

Incorrectly Classified Instances 122
0.4843 %

Kappa statistic 0.9903

Mean absolute error 0.0075

Root mean squared error 0.0687

Relative absolute error 1.5046 %

Root relative squared error 13.7643 %

Coverage of cases (0.95 level) 99.5554 %

Mean rel. region size (0.95 level) 50.1707 %

Total Number of Instances 25192

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision
Recall F-Measure ROC Area Class

 0.996 0.006 0.995

0.996 0.995 0.996 normal

 0.994 0.004 0.996

0.994 0.995 0.996 anomaly

Weighted Avg. 0.995 0.005 0.995

0.995 0.995 0.996

=== Confusion Matrix ===

 a b <-- classified as

 13398 51 | a = normal

 71 11672 | b = anomaly

TABLE B10: 25 Attributes function LibSVM of

train data

Test mode: 2-fold cross-validation

=== Classifier model (full training set) ===

LibSVM wrapper, original code by Yasser EL-

Manzalawy (= WLSVM)

Time taken to build model: 2757.88 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 23023

91.3901 %

Incorrectly Classified Instances 2169

8.6099 %
Kappa statistic 0.825

Mean absolute error 0.0861

Root mean squared error 0.2934

Relative absolute error 17.2991 %

Root relative squared error 58.8202 %

Coverage of cases (0.95 level) 91.3901 %

Mean rel. region size (0.95 level) 50 %

Total Number of Instances 25192

=== Detailed Accuracy By Class ===

 TP Rate FP Rate

Precision Recall F-Measure

ROC Area Class

 1 0.184 0.861

1 0.925 0.908 normal

 0.816 0 1

0.816 0.898 0.908 anomaly

Weighted Avg. 0.914 0.099 0.926

0.914 0.913 0.908

=== Confusion Matrix ===

 a b <-- classified as

 13446 3 | a = normal
 2166 9577 | b = anomaly

TABLE B11: 25 Attributes function SMO of

train data

Number of kernel evaluations: 107619127

(45.871% cached)

Time taken to build model: 671.05 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 24510

97.2928 %
Incorrectly Classified Instances 682

2.7072 %

Kappa statistic 0.9455

Mean absolute error 0.0271

Root mean squared error 0.1645

Relative absolute error 5.4394 %

Root relative squared error 32.9829 %

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 6, ISSN No. 2455-2143, Pages 85-110
 Published Online October 2020 in IJEAST (http://www.ijeast.com)

101

Coverage of cases (0.95 level) 97.2928 %

Mean rel. region size (0.95 level) 50 %

Total Number of Instances 25192

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision

Recall F-Measure ROC Area Class
 0.985 0.041 0.965

0.985 0.975 0.972 normal

 0.959 0.015 0.983

0.959 0.971 0.972 anomaly

Weighted Avg. 0.973 0.029 0.973

0.973 0.973 0.972

=== Confusion Matrix ===

 a b <-- classified as

 13250 199 | a = normal

 483 11260 | b = anomaly

TABLE B12: 19 Attributes Naïve Bayes train

data

Time taken to build model: 0.69 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 23216

92.1562 %

Incorrectly Classified Instances 1976

7.8438 %

Kappa statistic 0.8418

Mean absolute error 0.0793

Root mean squared error 0.2757
Relative absolute error 15.9327 %

Root relative squared error 55.2604 %

Coverage of cases (0.95 level) 92.9144 %

Mean rel. region size (0.95 level) 51.0162 %

Total Number of Instances 25192

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision

Recall F-Measure ROC Area Class

 0.952 0.114 0.906

0.952 0.928 0.973 normal

 0.886 0.048 0.942

0.886 0.913 0.967 anomaly
Weighted Avg. 0.922 0.083 0.923

0.922 0.921 0.97

=== Confusion Matrix ===

 a b <-- classified as

 12809 640 | a = normal

 1336 10407 | b = anomaly

TABLE B19: 19 Attributes Decision Trees-J48

for train data

Number of Leaves : 189

Size of the tree : 237
Time taken to build model: 4.63 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 25046

99.4205 %

Incorrectly Classified Instances 146

0.5795 %

Kappa statistic 0.9884

Mean absolute error 0.009

Root mean squared error 0.0745

Relative absolute error 1.8057 %

Root relative squared error 14.9359 %

Coverage of cases (0.95 level) 99.5435 %
Mean rel. region size (0.95 level) 50.6828 %

Total Number of Instances 25192

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision

Recall F-Measure ROC Area Class

 0.996 0.008 0.993

0.996 0.995 0.996 normal

 0.992 0.004 0.995

0.992 0.994 0.996 anomaly

Weighted Avg. 0.994 0.006 0.994

0.994 0.994 0.996

=== Confusion Matrix ===
 a b <-- classified as

 13394 55 | a = normal

 91 11652 | b = anomaly

TABLE B14: 19 Attributes function LibSVM of

train data

=== Classifier model (full training set) ===

LibSVM wrapper, original code by Yasser EL-

Manzalawy (= WLSVM)

Time taken to build model: 1187.69 seconds

=== Stratified cross-validation ===
=== Summary ===

Correctly Classified Instances 22743

90.2787 %

Incorrectly Classified Instances 2449

9.7213 %

Kappa statistic 0.8021

Mean absolute error 0.0972

Root mean squared error 0.3118

Relative absolute error 19.5322 %

Root relative squared error 62.5016 %

Coverage of cases (0.95 level) 90.2787 %

Mean rel. region size (0.95 level) 50 %
Total Number of Instances 25192

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision

Recall F-Measure ROC Area Class

 1 0.208 0.846 1

0.917 0.896 normal

 0.792 0 1

0.792 0.884 0.896 anomaly

Weighted Avg. 0.903 0.111 0.918

0.903 0.901 0.896

=== Confusion Matrix ===
 a b <-- classified as

 13446 3 | a = normal

 2446 9297 | b = anomaly

TABLE B15: 19 Attributes function SMO of

train data

Number of kernel evaluations: 117638676

(44.952% cached)

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 6, ISSN No. 2455-2143, Pages 85-110
 Published Online October 2020 in IJEAST (http://www.ijeast.com)

102

Time taken to build model: 631.05 seconds

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 24503

97.265 %

Incorrectly Classified Instances 689
2.735 %

Kappa statistic 0.945

Mean absolute error 0.0273

Root mean squared error 0.1654

Relative absolute error 5.4952 %

Root relative squared error 33.1517 %

Coverage of cases (0.95 level) 97.265 %

Mean rel. region size (0.95 level) 50 %

Total Number of Instances 25192

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision

Recall F-Measure ROC Area Class
 0.985 0.041 0.965

0.985 0.975 0.972 normal

 0.959 0.015 0.982

0.959 0.97 0.972 anomaly

Weighted Avg. 0.973 0.029 0.973

0.973 0.973 0.972

=== Confusion Matrix ===

 a b <-- classified as

 13245 204 | a = normal

 485 11258 | b = anomaly

A. Discussion of Results

We now discuss the output obtained in fig 4.1. Our

first experimental object was truncated from the

original KDDCup’99 with 42 attributes. Each

object is defined in 42 attributes, and belongs to

one of the five classes: normal and any of these

attacks: probe, denial-of service (DOS),

unauthorized access to root (U2R) and

unauthorized access from remote machine (R2L)

referring to an Anomaly. The different classes of

Attacks are as giving below:

1. Denial of Service Attacks:
In denial of service the attacker develops some

computing or memory resource available or

unavailable to manage valid requirements, or reject

valid user’s rights to use a machine.

2. User to Root Attacks:
In User to Root attack, the attacker initiate by using

a normal user account on the system and take

advantage of some vulnerability to achieve root

access to the system.

3. Remote to User Attacks:
Remote to User attack takes place when an attacker

has the ability to send packets to a machine over a

network but does not have an account on that

machine, performing some vulnerability to access

as a user of that machine.

4. Probes:

Probing is a kind of attacks that takes place when

an attacker checks a network to collect information

or find out well-known threats. This information is

helpful for an attacker who plans to make an attack

in future. There are different types of probes such
as abusing the system’s legitimate features, using

social engineering methods. However this type of

attack requires few technical expertises.

Objects in the normal class are harmless

connections, whereas objects in the other Anomaly

class are different types of attacks. The training set

contains 125,972 connections; the test data includes

22,543. The KDD Cup 1999 data set is the only

large-scale, publicly available data for evaluating

intrusion detection tools. A detailed description of

the data set is available on the Attack Analysis

sheet. We have used a subset of the 20% of the new
NSL-KDDCup 2009, otherwise known as refined

KDDCup ‘99 dataset as our train dataset and 21%

of the test data. The test dataset is the same as that,

which was used in evaluating classification

algorithms in KDD-Cup 99 contest.

We normalized the train and test data sets, where

each numerical value in the data set is normalized

between 0.0 and 1.0. Fig.4.1 shows a complete

output of Naïve Bayesian algorithm from WEKA

software. All other parameters are taken from the

output as the experiments were carried out for all
the algorithms.

We will now continue with the discussion of the

results using the following parameters:

Table 5. Cross Validation Summary.

Summary of train data for 42 attributes

Summarize
Properties for 42

attributes

Naïve
Bayes

J48
decisi

on

Trees

Lib SVM
(SVM)

Optimized SVM(SMO)

 2 fold cross

validation

10 fold cross

validation

Time taken to build

the model(s)

1.6 13.55 1234.28 850.42 501.38

Incorrectly
classified Instances

2622 111 1506 677 970

Correctly classified

instances

22570 25081 23686 24515 10880

Total number of

instances

25192 25192 25192 25192 11850

% of correctly

classified instances

89.5919 99.55

94

94.0219 97.3126 91.8143

% of incorrectly
classified instances

10.4081 0.440
6

5.9781 2.6874 8.1857

Kappa Statistics 0.7906 0.991

1

0.8789 0.9459 0.6868

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 6, ISSN No. 2455-2143, Pages 85-110
 Published Online October 2020 in IJEAST (http://www.ijeast.com)

103

Fig. 3. A Graph of Different types of Algorithm as

against time taken to build the model(s) for 42

Attributes

Table 6: Summary of train data for 25 attributes

Fig 4. A Graph of Different types of Algorithm as

against time taken to build the model (secs) for 25

attributes

 Table 7. Summary of train data for 19 attributes

Summarize Properties

for 19 attributes

Naïv

e

Baye

s

J48

decisi

on

Trees

Lib

SVM

(SVM

)

Optimized

SVM(SM

O)

Time taken to build the

model(s)

0.69 4.09 1187.

69

631.05

Incorrectly classified

Instances

1976 146 2449 689

Correctly classified

instances

2321

6

25046 22743 24503

Total number of

instances

2519

2

25192 25192 25192

% of correctly classified

instances

92.1

562

99.42

05

90.27

87

97.265

% of incorrectly

classified instances

7.84

38

0.579

5

9.721

3

2.735

Kappa Statistics 0.84

18

0.988

4

0.802

1

0.945

Fig 5. A Graph of Different types of Algorithm as

against time taken to build the model (secs) for 19

attributes

A. Time taken to build the model.

Fig 4.2 - 4.4 shows time taken to build the model

for every algorithm above. From the tables and

charts, it is clear that Naïve bayes algorithm takes

a shorter time to build a model, averaging between

1.66s for 42 attributes to 0.95s for 25 attributes and

0.69 for 19 attributes. This is closely followed by

J48. LibSVM took longer time to build a model,

this is due to the time it takes to build a quadratic

functions. SMO took shorter time than LibSVM

because the functions in SMO are decomposed

into serial minimal Quadratic problems.

Kappa Statistics Algorithms Charts

Summarize Properties for 25
attributes

Naïve
Bayes

J48 decision
Trees

LibSVM
(SVM)

Optimized
SVM(SMO

)

Time taken to build the

model(s)

0.95 7.41 2757.88 671.05

Incorrectly classified Instances 2782 122 2169 682

Correctly classified instances 22410 25070 23023 24510

Total number of instances 25192 25192 25192 25192

% of correctly classified

instances

88.9568 99.5157 91.3901 97.2928

% of incorrectly classified

instances

11.0432 0.4843 8.6099 2.7072

Kappa Statistics 0.9233 0.9903 0.825 0.9455

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 6, ISSN No. 2455-2143, Pages 85-110
 Published Online October 2020 in IJEAST (http://www.ijeast.com)

104

Fig 6. A Graph of different Algorithms against

Kappa Statistic for 42 attributes

A. Kappa Characteristics
From the above Chart, The Kappa characteristic

measures the agreement of a prediction to the true

class. The higher the value of prediction; the better

the prediction. Fig 4.5 shows

 that J48 has the highest Kappa characteristics

hovering around 0.98 to 0.99, competitively

followed by SMO and Naive Bayesian. The highest

value that Kappa characteristics can go is a value of

one.

DETAILED ACCURACY BY CLASS

Table 8. for Detailed accuracy by class for 42 attributes

Table 9. for Detailed accuracy by class for 25 attributes

Area under curve (AUC) chart

B. Area under the curve (AUC)

Fig7 show Bar graphs of AUC for all the set of experiments we carried out. For each set of attributes, J48 shows

a higher value over and above other algorithms. Just like the Kappa characteristic is gauge with a value 1 as the

highest, so is AUC. This again suggests that J48 is a better algorithm for data classifications.

Accuracy

description
Naïve Bayes J48 LibSVM SMO

 Nor. Ano. Aver Nor. Ano. Aver Nor. Ano. Aver Nor. Ano. Aver

True positive 0.83 0.618 0.657 0.908 0.985 0.971 0.551 0.992 0.912 0.619 0.984 0.918
False Positive 0.382 0.17 0.208 0.015 0.092 0.078 0.008 0.449 0.369 0.016 0.381 0.314
Precision 0.326 0.943 0.943 0.932 0.98 0.971 0.936 0.909 0.914 0.898 0.921 0.917

Recall 0.83 0.618 0.618 0.908 0.985 0.971 0.551 0.992 0.912 0.619 0.984 0.918
F- measure 0.468 0.747 0.747 0.92 0.982 0.971 0.693 0.948 0.902 0.733 0.952 0.912

ROC Area 0.848 0.844 0.696 0.971 0.971 0.971 0.771 0.771 0.771 0.802 0.802 0.802

Accuracy

description
Naïve Bayes J48 LibSVM SMO

 Nor. Ano. Aver Nor. Ano. Aver Nor. Ano. Aver Nor. Ano. Aver

True positive 0.911 0.865 0.89 0.996 0.994 0.995 1 0.816 0.914 0.985 0.959 0.973

False Positive 0.135 0.089 0.114 0.006 0.004 0.005 0.184 0 0.099 0.041 0.015 0.029

Precision 0.885 0.895 0.89 0.995 0.996 0.995 0.861 1 0.926 0.965 0.983 0.973

Recall 0.911 0.865 0.89 0.996 0.994 0.995 1 0.816 0.914 0.985 0.959 0.973

F- measure 0.898 0.88 0.889 0.995 0.995 0.995 0.925 0.898 0.913 0.975 0.971 0.973

ROC Area 0.968 0.962 0.965 0.996 0.996 0.996 0.908 0.908 0.908 0.972 0.972 0.972

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 6, ISSN No. 2455-2143, Pages 85-110
 Published Online October 2020 in IJEAST (http://www.ijeast.com)

105

Fig 7. A Graph of different Algorithms against ROC

Table for Detailed accuracy by class for 42 attributes test data

False positive rate chart

Fig 8. A Graph of Different Algorithms against False Positives 42 attributes test data

E. False positive rate
False positives rate gives the value of events that are wrongly classified. From the graphs in Fig 4.7, J48 has the

lowest false positive rate as low as 0.078 as against LibSVM that recorded 0.37 at a time when we ran it on 42

attributes. This suggests that J48 algorithm has lower rates of errors than the other data mining Machines.

Accuracy

description

Naïve Bayes J48 LibSVM SMO

 Nor. Ano. Aver Nor. Ano. Aver Nor. Ano. Aver Nor. Ano. Aver

True

positive

0.83 0.618 0.657 0.908 0.985 0.971 0.551 0.992 0.912 0.619 0.984 0.918

False

Positive

0.382 0.17 0.208 0.015 0.092 0.078 0.008 0.449 0.369 0.016 0.381 0.314

Precision 0.326 0.943 0.943 0.932 0.98 0.971 0.936 0.909 0.914 0.898 0.921 0.917

Recall 0.83 0.618 0.618 0.908 0.985 0.971 0.551 0.992 0.912 0.619 0.984 0.918

F- measure 0.468 0.747 0.747 0.92 0.982 0.971 0.693 0.948 0.902 0.733 0.952 0.912

ROC Area 0.848 0.844 0.696 0.971 0.971 0.971 0.771 0.771 0.771 0.802 0.802 0.802

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 6, ISSN No. 2455-2143, Pages 85-110
 Published Online October 2020 in IJEAST (http://www.ijeast.com)

106

Receiver Operating Characteristics (ROC) Graph

Fig 9. A graph comparing the ROC characteristics for Naïve Bayes, J48 and SMO

Fig 10. A graph comparing the ROC characteristics for Naïve Bayes, J48 and SMO.

F. Receiver Operating Characteristics

(ROC)

Fig 4.14 shows the characteristics curve of three

algorithms. We did not include LibSVM because of

its scaling capability. As a quadratic function, it has

linear graphs just as SMO, but SMO load faster
than LibSVM. We are sure it is because of its serial

minimal characteristics. It kept giving heap size

error when ran the entire four algorithms together,

not until we remove the LibSVM algorithm on

WEKA knowledge flow. Since SMO and LibSVM

are both quadratic functions one will suffice to use

for the purpose of this comparative work.

The intersection between the Naïve Bayes and the

linear graph of SMO is described as the point of

equal error rate for the two algorithms. Equal error

rate is the point where the usability of the two

algorithms is as good as the security of the IDS for

the network. Fig 4.8a is shows the graph for the
three algorithm in a lower jitter setting, while in fig

4.8b we increase the jitter setting so as to

magnified the graph for better clarity of

understanding. The linear graph is the graph of

SMO, the thicker line is for the Naïve bayes while

the last on top with the + sign wind together is for

J48 algorithm suggesting the best ever among the

algorithm.

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 6, ISSN No. 2455-2143, Pages 85-110
 Published Online October 2020 in IJEAST (http://www.ijeast.com)

107

G. Experimenter
We set up the test bed for the experimenter using

both train and test data to run two folds to be

repeated twice. We tried to run it for ten folds to

repeat 10 times and it took more than 24hrs to

complete, even at completion it was not
successfully. This, we attributed it to the quadratic

nature of LibSVM function, because the log

showed that it was counting for this algorithm.

Tester: weka.experiment.PairedCorrectedTTester

Analysing: Percent_correct

Datasets: 1

Resultsets: 4

Confidence: 0.05 (two tailed)
Sorted by: -

Date: 2/21/12 11:43 PM

Dataset (1) trees.J4 | (2) bayes (3) funct

(4) funct

--

KDDTest (4) 98.43 | 81.16 * 94.62

* 90.66 *

--

 (v/ /*) | (0/0/1) (0/0/1)
(0/0/1)

Key:

(1) trees.J48 '-C 0.25 -M 2' -217733168393644444

(2) bayes.NaiveBayes '' 5995231201785697655

(3) functions.SMO '-C 1.0 -L 0.0010 -P 1.0E-12 -N

0 -V -1 -W 1 -K

\"functions.supportVector.PolyKernel -C 250007 -

E 1.0\"' -6585883636378691736

(4) functions.LibSVM '-S 0 -K 2 -D 3 -G 0.0 -R 0.0

-N 0.5 -M 40.0 -C 1.0 -E 0.0010 -P 0.1 -model

\"C:\\\\Program Files\\\\Weka-3-7\"' 14172

Fig 4.8a Output of the experimenter using
KDDTest Dataset

Tester: weka.experiment.PairedCorrectedTTester

Analysing: Percent_correct

Datasets: 1

Resultsets: 4

Confidence: 0.05 (two tailed)

Sorted by: -

Date: 2/22/12 1:46 AM

Dataset (1) trees.J4 | (2) bayes (3) funct

(4) funct
--

KDDTrain-20Percent (4) 99.47 | 89.73 *

97.31 * 94.00 *

--

 (v/ /*) | (0/0/1) (0/0/1)

(0/0/1)

Key:

(1) trees.J48 '-C 0.25 -M 2' -217733168393644444

(2) bayes.NaiveBayes '' 5995231201785697655

(3) functions.SMO '-C 1.0 -L 0.0010 -P 1.0E-12 -N

0 -V -1 -W 1 -K

\"functions.supportVector.PolyKernel -C 250007 -

E 1.0\"' -6585883636378691736

(4) functions.LibSVM '-S 0 -K 2 -D 3 -G 0.0 -R 0.0
-N 0.5 -M 40.0 -C 1.0 -E 0.0010 -P 0.1 -model

\"C:\\\\Program Files\\\\Weka-3-7\"' 14172

Fig 4.8b Output of the experimenter using

KDDTrain Data

We make our comparism using the percent correct

statistic for the four methods which are displayed

horizontally, numbered (1), (2), (3) and (4), as the

heading of a little table. The labels for the columns

are repeated at the bottom—trees.J48, bayes.

Naivebayes, functions.SMO and functions.

LibSVM, in case there is insufficient space for
them in the heading the value in brackets at the

beginning of the KDDTest as in fig 4.8a row (4) is

the number of experimental runs: 2 times 2fold

cross-validation. The percentage correct for the

four schemes is shown in Figure 4.8a for test data

and fig 4.15b. For the test data showed in fig 4.8a,

98.43% for method 1, 81.16% for method 2,

94.62% for method 3 and 90.66% for method 4.

The symbol placed beside a result indicates that it

is statistically better (v) or worse (*) than the

baseline scheme. In this case J48 at the specified
significance level (0.05, or 5%) is better than other

methods.

As shown, method 2 is significantly worse than

method 1 because its success rate is followed by an

asterisk. At the bottom of columns 2, 3 and 4 are

counts (x/y/z) of the number of times the scheme

was better than (x), the same as (y) or worse than (z

the baseline scheme on the datasets used in the

experiment. In this case there is only one dataset

i.e. fig 4.8a method 2 was worse than method 1 (the

baseline) once, method 3 was worse than it once, in

same way method 4 was worse than the baseline
once. (The annotation (v/ /*) is placed at the

bottom of column 1 to help you remember the

meanings of the three counts (x/y/z). The

explanation is applied to fig 4.8b.

VI. CONCLUSION

We have studied four well known Algorithm using
WEKA work bench, including Experimenter and

ROC, the performance or the choice as regards a

learning algorithm for data mining in Intrusion

detection systems was also achieved in the study.

The key motivation for the use of data mining

method in intrusion detection is enhance

automation. Data mining technologies, such as

decision tree (DT), naïve Bayesian classifier (NB),

Sequential minimal optimization (SMO), support

vector machine (SVM), k-nearest neighbors

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 6, ISSN No. 2455-2143, Pages 85-110
 Published Online October 2020 in IJEAST (http://www.ijeast.com)

108

(KNN), fuzzy logic model, and genetic algorithm.

Which is widely used to analyze network logs in

order to enhance intrusion related knowledge and

improve the performance of IDS. Data mining

provide decision support for intrusion management,

and also help IDS in the detecting of new
vulnerabilities and intrusions by discovering

unknown patterns of attacks or intrusions.

We have achieved the following in this paper, from

the design and implementation of IDS: Firstly, the

ability of IDS to be able to detect attacks and the

percentage of false alarms, ease of use, most secure

and interoperability J48 version of the decision

trees is better. This is because it has the lowest

false positives, highest ROC areas and detection

rates. Another approach to this parlance is the

analysis using Kappa characteristics which by

implication shows that J48 has the higher
characteristics. We went further to plot a graph of

false positives against true positives for the

algorithms and confirm that J48 graph is higher and

better than other Algorithms. Efforts were also in

using Experimenter in the same WEKA bench,

which again proved J48 to have a better (higher)

value, and by implication the best of the four. It is

only in efficiency (time taken to process

information) that Naïve Bayes shows that it can be

relied on, than other Algorithm. In all the

combination of attributes Naïve bayes was faster
than J48 in about 8 times.

Finally, J48 algorithm proved to be the best of the

four methods of classifiers investigated, it was

closely and competitively followed by SMO and

Naïve Bayesian. In all parameters employed on the

work bench, SVM shows the worst of the three

algorithms in the entire different test carried out.

Thus, we conclude that J48 is a reliable approach

for generating a high good classification system for

a given data. The only aspect that Naïve Bayes

showed superiority over others is in the area of the

time taken to build model.

VII. REFERENCES

[1] Adetunmbi, A. O., Adeola S. O. & Daramola,

O. A. (2010). “Analysis of KDD ’99 Intrusion

Detection Dataset for Selection of Relevance

Features,” Proceedings of the World Congress on

Engineering and Computer Science. San
Francisco, USA.3(4); 101-105

[2] Alan, B., Chandrika, P., Rasheda, S. &

Boleslaw S. (2002), “Network-Based Intrusion

Detection

Using Neural Networks,” In Proceedings of the

Intelligent Engineering Systems through Artificial

Neural Networks, St.Louis, ASME Press, New York.

1(2);579-584,

[3] Aly, Ei-S., Janica, E., Jesus, G-P. & Mauricio

P. (2006). “Applying Data Mining of Fuzzy

Association Rules to Network Intrusion Detection”,

In the Proceedings of Workshop on Information

Assurance United States Military Academy, IEEE

Communication Magazine, West Point,

NY,DOI:10.1109/IAW/652083.22-31

[4] Amir, A., Alasti, A., Ahmad, H. N. & Hadi, B.
(2011). “A New System for Clustering &

Classification of Intrusion Detection System Alerts

Using SOM,” International Journal

 of Computer Science & Security, 4(6);589-597.

[5] Anderson, J. P. (1980). “Computer Security

Threat Monitoring & Surveilance”, Technical

 Report, Fort Washington, Pennsylvania.3(4);86-

92.

[6] Buntod, P. C., Suksringam, P., & Singseevo, A.

(2010). “Effects of learning environmental

Education on science process skills and critical

thinking of mathayomsuksa 3 students with
different learning achievements,” J.Soc. Sci.,

6(1);60-63.

[7] Chen, P. H., Lin, C. J., & Schkopf, B. (2005).

“A tutorial on m-support vector machines,”

 National Taiwan University.22-32.

[8] Christopher, J. C. Burges (1998). “A Tutorial

on Support Vector Machines for Pattern

Recognition,” Retrived on June 27, 2012 from

http://www.burges@lucent.com/Bell Laboratories,

Lucent Technologies. Kluwer Academic Publishers,

Boston. Manufactured in the Netherlands.
[9] Denning, D.E (1987). “An Intrusion Detection

Model,” Transactions on Software Engineering,

 IEEE Communication Magazine,

13(1);222-232.

[10] Dewan, Md. F. & Mohammed, Z. R. (2010).

“Anomaly Network Intrusion Detection Based on

Improved Self Adaptive Bayesian Algorithm,”

Journal of Computers, 5(1);23-31.

[11] Dewan, Md. F., Nouria, H. & Mohammad, Z.

R. (2010). “Combining Naive Bayes and Decision

Tree for Adaptive Intrusion Detection,”

International journal of network security & its
 applications (ijnsa), 2(2).

[12] Diego, Z. (2001). “Using internal sensors for

computer intrusion detection,” Ph.D.

 Dissertation, Purdue University. 22-32

[13] Han, J. & Kamber, M. (2000). “Data Mining:

Concepts and Techniques,”(1st ed.). San

Francisco:Morgan Kaufmann Publisher.223-231

[14] Harley K. (2003). “Intrusion Detection: Host-

Based and Network-Based Intrusion Detection

Systems,” An Independent Study.56-60

[15] Jacob, W., Ulvila & John, E. G. (2003).
“Evaluation of Intrusion Detection Systems,”

Journal of Research of the National Institute of

Standards and Technology. J. Res. Natl Jacob W.

Ulvila and John E. Gaffney, Jr.. Inst.Stand.

Technol. 108(6);453-473.

mailto:burges@lucent.com

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 6, ISSN No. 2455-2143, Pages 85-110
 Published Online October 2020 in IJEAST (http://www.ijeast.com)

109

[16] Jake, R., Lin, M- J. & Risto, M. (1998).

“Intrusion Detection With Neural Networks,”

Advances

 In Neural Information Processing System

10, Cambridge, MA:MIT Press, DOI:10.1.1.31.

3570. 32-44.
[17] Jin-Ling, Zhao, Jiu-fen, & Zhao, Jian-Jun Li

(2005). “Intrusion Detection Based on Clustering

Genetic Algorithm,” In Proceedings of

International Conference on Machine Learning &

Cybernetics (ICML) IEEE Communication

Magazine, ISBN:0-7803-9091-1,DOI:

10.1109/ICML.1527621. 23(4); 24 - 33

[18] Knowledge discovery in databases (1999). “

DARPA archive. Task Description”. Retrived on

 May 22, 2012 from

http://www.kdd.ics.uci.edu/databases/kddcup99/tas

k.html
[19] Mahbod, T., Ebrahim, B., Wei Lu, & Ali, A.

G. (2009). “A Detailed Analysis of the

KDD CUP 99 Data Set,” proceedings of the IEEE

Symposium on Computational

 intelligence in security and defense applications.

73 - 119

[20] Matthew, V. M. & Philip, K. C. (2003). “An

Analysis of the 1999 DARPA/Lincoln Laboratory

Evaluation Data for Network Anomaly Detection,”

Computer Science Department,

Florida Institute of Technology,150 W. University
Dr., Melbourne, Florida 329012, (3);686-692.

[21] Mahoney, M. & Chan, P. (2003). “An analysis

of the 1999 DARPA/Lincoln laboratory

evaluation data for network anomaly detection,”

Proceedings of Recent Advances in

 intrusion detection (RAID) Pittsburg, USA. 3(4);

55-76.

[22] MeeraGandhi, G., Kumaravel, A., Srivatsa, S.

K. (2010). “Effective Network Intrusion

Detection using Classifiers Decision Trees and

Decision rules,” Int. J. Advanced Networking and

Applications.2(3);686-692.
[23] MIT Lincoln Laboratory (2011). “DARPA

Intrusion detection Evaluation,” Retrived on May 7,

 2012 from http://www.ii.mit.edu.org

[24] Mohammad, S. A. & Jafar, H. (2008).

“Computer Intrusion Detection Using an

 Iterative Fuzzy Rule Learning Approach”

10 – 4.

[25] Mrutyunjaya, P. & Manas, R. P. (2007).

“Network intrusion detection using Naïve Bayes,”

Department of E &TC Engineering, G.I.E.T.,

Gunupur, India and Department of Computer
Science, Berhampur University, Berhampur, India

IJCSNS International Journal of Computer Science

and Network Security,7(12).

[26] Mr. Hemant, H. P. & Ketan, J. S. (2011).

“Analysis of Data mining Algorithm in Intrusion

Detection,” International Journal of Emerging

Technology and Advanced Engineering. 2(3);686-

692.

[27] Muamer, N. M., Norrozila, S. & Emad T. K.

(2011). “A Novel Local Network Intrusion

Detection System Based on Support Vector
Machine,” Journal of Computer Science

 Publications by Faculty of Computer Systems and

Software Engineering, University

Malaysia Pahang, Kuantan 26300, Malaysia

Muamer. 7 (10);1560-1564.

[28] Nadiammai, G.V., Krishnaveni, S. &

Hemalatha, M. (2011). “A Comprehensive

Analysis and

study in Intrusion Detection System using Data

Mining Techniques,” International

 Journal of Computer Applications. 35(8);0975 –

8887.
[29] Nahla, B. A., Salem, B. & Zied, E. (2003).

“Naive Bayes vs Decision Trees in Intrusion

Detection Systems,” Institute Supérieur de

Gestion41 Avenue de la libert´e 2000 Le

 Bardo, Tunisie 3(5); 60 – 87.

[30] Nashville, T. L. (2007). “An evaluation of

machine learning techniques in intrusion

Detection,” 31 - 40

[31] Nello, C. & John, S-T. (2005). “An

Introduction to Support Vector Machines and Other

Kernel –based Learning Methods,” China Machine
Press. 1 - 123

[32] Nsl-kdd (2009). “Data set for network-based

intrusion detection systems”. Retrived on July 25,

 2012 from http://nsl.cs.unb.ca/NSL-KDD

[33] Oswais, S., Snasel, V., Kromer, P. &

Abraham, A. (2008). “Survey: Using Genetic

Algorithm

 Approach in Intrusion Detection Systems

Techniques,” In the Proceedings of 7th

 International Conference on Computer

Information & Industrial Management

Applications
 (CISIM), IEEE Communication

Magazine,49(1)300-307.

[34] Paxson, V. Bro. (1999). “A System for

Detecting Network Intruders in Real-Time,”

Computer

 Networks, 31(14);2435-2463.

[35] Peter, M., Vincent, H. L., Josh, H. & Marc,

Z. (2004). “An Overview of Issues in Testing

 Intrusion Detection Systems,” National

Institute of Standards and Technology ITL and

 Massachusetts Institute of Technology
Lincoln Laboratory.3(4);334-338.

[36] Provost, F. & Fawcett, T. (2001). “Robust

classification for imprecise environment,” Machine

 Learning, 42(3);203-231.

[37] Richard, P. L., David, J., Fried, Isaac, G.,

Joshua, W. H., Kristopher, R. K., David, McClung,

http://www.kdd.ics.uci.edu/databases/kddcup99/task.html
http://www.kdd.ics.uci.edu/databases/kddcup99/task.html
http://www.ii.mit.edu.org/
http://nsl.cs.unb.ca/NSL-KDD

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 6, ISSN No. 2455-2143, Pages 85-110
 Published Online October 2020 in IJEAST (http://www.ijeast.com)

110

Dan W., Seth E. W., Dan W., Robert K. C. & Marc

A. Z. (2000). “Evaluating Intrusion Detection

Systems”: The 1998 DARPA Off-line Intrusion

Detection Evaluation. Lincoln Laboratory MIT,

244 Wood Street, Lexington, MA 02173-9108.

Institute of Electrical and Electronics Engineers.
Reprinted from Proceedings DARPA Information

Survivability Conference and Exposition (DISCEX)

2000, IEEE Computer Society Press, Los Alamitos,

CA.

[38] Sapna, S., Kaushik & Deshmukh, P. R. (2011).

“Comparisons of approaches to implement

intrusion detection system,” International Journal

of Computer Science and Communication 2(1);45–

48.

[39] Sathyabama, S., Irfan A.M.S, Saravanan, A.

(2011). “Network Intrusion Detection Using

Clustering: A Data Mining Approach,”
International Journal of Computer Application

30(4);0975-8887. ISBN: 978-93-80864-87-5, DOI:

10.5120/3670-5071.

[40] Sekeh, M. A. & Bin Maarof, M. A. (2009).

“Fuzzy Intrusion Detection System Via Data

Mining

with Sequence of System Calls,” In the

Proceedings of International Conference on

Information Assurance & security (IAS), IEEE

Communication Magazine, 32(1);154-158.

[41] Shilendra, K., Shrivastava & Preeti, J. (2011).
“Effective Anomaly Based Intrusion Detection

Using Rough Set Theory & Support Vector

Machine,” 18(3);0975-8887, DOI: 10.5120/2261-

2906.

[42] Srinivas, M., Andrew, H. Sung & Ajith

A.(2004). “Intrusion Detection Using an Ensemble

of Intelligent Paradigms,” Journal of Network &

Computer Applications,1- 15.

[43] Taeshik, S. & Jong, S. Moon (2007). “A

Hybrid Machine Learning Approach to Network

Anomaly Detection,” Information Sciences,

177(18);3799-3821, Publisher: USENIX

Association, ISSN:00200255,DOI:10.1016/j.ins.

[44] Tang,Y. & Lixin, XU (2008). “Research of
the Network Intrusion Detection Method Based on

Support Vector Machine School of Astronautic

Science and Technology,” Beijing Institute of

Technology, 100081 International Symposium on

Photo electronic Detection and Imaging: Image

Processing, Proc. of SPIE 18(1);6623 - 6631

[45] Teng, H. S., Chen, K. & Lu, S. C. (1990).

“Adaptive Real-Time Anomaly Detection using
 Inductively Generated Sequential Patterns,”

In the Proceedings of Symposium on research

 in Computer Security & Privacy, IEEE

Communication Magazine,278-284.

[46] Weka 3: “Data mining software in java”.

Retrived on June 27, 2012 from

http://www.cs.waikato.ac.nz/ml/weka/.

[47] Ahmad M.A, Woodhead S. (2015),

Containment of fast scanning computer network

worms,

 international conference on internet and
distributed computing systems, 235-247, 2015.

[48] Ahmad M.A,Woodhead S. Gan D. (2016), The

V-network testbed for malware analysis 2016

 international conference on advanced

communication control and technology, 2016.

[49] Ahmad M.A,Woodhead S. Gan D. (2016), A

safe guard against fast self-propagating malware,

 proceedings of the 6th international

conference on communication and networks, 2016.

[50] Ahmad M.A,Woodhead S. Gan D. (2016),

Early containment of fast network worm malware,

 IEEE 2016.

