PACHYSTELA BREVIPES (BAK.) ENGL
(SAPOTACEAE) STEM BARK DECOCTION
EXHIBITED ESTROGENIC EFFECTS IN
OVARIECTOMIZED WISTAR RAT

Zemo Gamo Franklin
Department of Animal Biology and Physiology,
Faculty of Science
Department of Psychology,
Faculty of Arts, Letters and Social Science
University of Yaounde I, Yaounde, Cameroon

Ateba Sylvin Benjamin
Department of Biological Science,
Faculty of Science
University of Douala, Douala, Cameroon

Ketcha Wanda Germain Jean Magloire
Department of Psychology,
Faculty of Arts, Letters and Social Science.
University of Yaounde I, Yaounde, Cameroon

Djiogue Sefirin
Department of Animal Biology and Physiology,
Faculty of Science.
University of Yaounde I, Yaounde, Cameroon

Njamen Dieudonne
Department of Animal Biology and Physiology
Faculty of Science.
University of Yaounde I, Yaounde, Cameroon

Abstract— Pachystela brevipes (Bak.) Engl (Sapotaceae) is a plant used in West region of Cameroon to improve conception and alleviate vaginal dryness in elderly women. Thus, this study was designed to evaluate the potential estrogenic of the decoction of stem bark of P. brevipes (175, 350 and 700 mg/kg BW) using a 3-day uterotrophic assay in ovariectomized rats. P. brevipes extract had no effect uterine wet weight while, significantly (p < 0.05) increased uterine (at 350 and 700 mg/kg) and vaginal (at 700 mg/kg) epithelial thickness. Moreover, this extract induced an E2V-like effect on mammary gland by increased the diameter of alveoli and induced eosinophil secretion at all tested doses. These results suggest that P. brevipes extract is endowed with estrogenic properties and could justify its traditional used.

Keywords— Pachystela brevipes, estrogenic properties, ovariectomized Wistar rat, stem bark

I. INTRODUCTION

Pachystela brevipes (Bak.) Engl (syn. Synsepalum brevipes (Baker) T. D. Penn), commonly known as star apple of the forest, belongs to the Sapotaceae family. This evergreen tree is widely distributed in West and Central Africa (from Senegal to Cameroon), Sudan, East Africa and Mozambique [1,2]. It is also found in the Middle East and South Asia [1]. Throughout these African Regions, this indigenous fruit tree is known for its potential in nutritional values, environmental stability, and economic development [3,4]. The hard, heavy and durable wood is used for pestles, tool handles, stakes, seats, canoes, domestic utensils, and for fuel and making charcoal [5]. The fruit containing a milky juice and white mucilaginous acid-sweet pulp is edible, very frequently as a snack. In Uganda its consumption has been reported in people living with HIV/AIDS because of their presumed nutrition and health benefits [6]. In traditional medicine, the fruit pulp is used against jaundice and nausea while, the latex from this fruit is applied as a galactagogue [5]. Others uses of this plant include hookworm infection of the small intestine, malaria, pneumonia, oedema, swellings, stomach complaints and toothaches [7,8,9]. In the West Region of Cameroon (Mamougnam, Noun Division) this plant is also used for conception and to alleviate vaginal dryness in postmenopausal women. In previous studies, antibacterial [2], anti-diabetic, antifecundant and contraceptive effects [10,11,12,13,14] have been reported. On the other hand, the phytochemical analysis of P. brevipes showed the presence of carbohydrates, cardiac...
glycosides, saponins, steroids, triterpenes, flavonoids, tannins and alkaloids [2]. Based on these information, mainly the traditional uses of this plant as galactagogue and against vaginal dryness, we hypothesized that this plant could exhibit estrogenic effects. Therefore, the present study was designed to evaluate the estrogenic properties of the decoction of stem bark of *Pachystela brevipes* using a 3-day uterotrophic assay in ovariectomized adult rats, an excellent and recommended tool for the screening of estrogenic properties of extracts and compounds [15]. The investigation in this assay focus on the estrogen primary targets for including uterus (wet weight and epithelial height), vagina (epithelial height) and mammary gland features.

II. MATERIAL AND METHODS

II.1. Animals

Juvenile female Wistar rats weighed 130 ± 3 g and aged 10-12 weeks were used. They were obtained from the breeding facility of the Animal Physiology Laboratory, University of Yaounde 1, and housed in in clean plastic cages at room temperature (around 25°C) under natural illumination (approx. 12 h light/dark). Animals had free access to tap water and soy-free rat chow ad libitum. Animal handling and experiments were carried out in conformity with the European Union on Animal Care (CEE Council 86/609) guidelines adopted by the Institutional Ethics Committee of the Cameroon Ministry of Scientific Research and Technology Innovation.

II.2. Plant material

Stem barks of *Pachystela brevipes* were collected in Mamougnam (Noun Division, West Region of Cameroon). This botanical sample was authenticated at the National Herbarium of Cameroon (HNC) in comparison to the specimens deposited under the voucher number 3851/SRKF/HNC.

II.3. Plant extraction and determination of doses

The aqueous extract of *Pachystela brevipes* was prepared following the traditional instructions. 683 g of air-dried and carved stem bark were carried to ebullition for 45 min in 2 L of water. After cooling and filtration using Wattman filter paper n°4, the solution was lyophilized and 6.7 g (0.98 %) of the dried extract obtained. The extract was kept at 4°C until use.

The doses of administration were obtained based on the traditional dosage in human (~56 mg/kg/day). The equivalent dose in rat of 350 mg/kg BW was obtained using allometric calculations [16]. Using the factors of ½ and 2, the doses of 175 and 700 mg/kg were also obtained and used in this study.

II.4. Experimental design

Twenty-five female Wistar rats were ovariectomized under diazepam and ketamine anesthesia (10 mg/kg BW and 50 mg/kg BW *i.p.*, respectively). Fourteen days after ovariectomy, the rats were randomly distributed into five groups of five rats each. OVX group received vehicle (distilled water), the second group (positive control) received 1 mg/kg BW of estradiol valerate (E₂V) and the three remaining groups received the extract of stem bark of *P. brevipes* at the doses of 175, 350 and 700 mg/kg BW, respectively. Animals were orally (gavage) and once daily treated (2ml/100g) for 3 days between 9 to 11 a.m. Twenty-four hours after the last administration, animals were sacrificed under diazepam and ketamine anesthesia. Uterus, vagina and mammary gland were removed. Prior to the fixation of these organs in 10% formaldehyde solution for histological analysis, uterine wet weight was determined.

II.5. Histological analysis

Histological analyses of mammary glands, uterus and vagina were assessed from 5-µm sections of paraffin-embedded tissues. Following hematoxylin-eosin staining, the uterine and vaginal epithelial heights as well as mammary alveolar gland and ductal features were assessed on microphotographs using the complete Zeiss equipment consisting of a microscope Axioskop 40 connected to a computer where the image was transferred with the MRGrab1.0 and AxioVision 3.1 software, all provided by Zeiss (Hallbermoos, Germany).

II.6. Statistical analysis

Data were expressed as the mean ± S.E.M and analyzed using GraphPad Prism 5.03 software. One-way analysis of variance (ANOVA) followed by Dunnett’s test was used. Differences were considered significant for p < 0.05.

III. RESULTS

III.1. Effects of *P. brevipes* extract on uterus

Compared to OVX group, the 3-day treatment of ovariectomized animals with the reference substance estradiol valerate (1 mg/kg) induced a 5- and 3.5-fold increase (p < 0.001) of uterine wet weight (figure 1A) and epithelial height (Figure 1B). The decoction of stem bark of *P. brevipes* did not induced affected the uterine wet weight while, increased (p < 0.05) the uterine epithelial height at the doses of 350 and 700 mg/kg BW (figure 1 B and figure 1C). Compared to OVX control animals in which epithelium is cubic, the photomicrographs of uterus of animals treated with the *P. brevipes* extract at the doses of 350 and 700 mg/kg showed a tall cuboidal epithelium (Figure 1C).
III.2. Effects of Pachystela brevipes extract on vagina
As shown in figure 2, the 3-day treatment with the aqueous extract of the stem bark of P. brevipes at the dose of 700 mg/kg BW as well as estradiol valerate, induced a significant (p < 0.001) increase of the vaginal epithelial height (Figure 2 A and B) as compared to OVX group. However, the increase of that parameter in rats treated with P. brevipes is 3.7-fold lower than that induced by E₂V. Vaginal epithelium of OVX animals only consisted of a thin layer of cubic cells, the stratum germinativum while, stratum germinativum and stratum granulosum were present in groups treated with P. brevipes at the doses of 700 mg/kg (Figure 2 B).

III.3. Effects of Pachystela brevipes extract on mammary gland
Microphotograph analysis shows that compared to OVX group, treatment with E₂V (1 mg/kg BW) increased the diameter and the lumen of alveoli, and displayed abundant eosinophil secretion (Se) in the lumen of alveoli (Figure 3) indicating a proliferative activity. The 3-day treatment with the decoction of Pachystela brevipes induced a similar effect. Compared to OVX group, increased diameter of alveoli and eosinophil secretion were observed at all tested doses.
Estrogen deficiency is associated with numerous problems affecting women’s health and well-being such as urogenital atrophy and vaginal dryness [17], osteoporosis, cardiovascular diseases [18], depression, anxiety, loss of cognition [19,20], oxidative activity and many neurodegenerative processes [21,22]. To face these unwanted effects, hormone replacement therapy (HRT) has been used for decades [23,24]. However, its long-term usage is associated with serious side effects such as the increased risk of endometrial and breast cancers [24]. For this reason, many women refuse or discontinue treatment. In this context, alternatives are needed and plants, used by traditional communities to alleviate menstrual symptoms, could prevent vaginal dryness. Both estrogenic substances have been used for decades [23,24]. However, their estrogenic properties were not well established, but a few results showed that the decoction of the stem bark of *P. brevipes* at all tested doses, induced estrogen-like effects on mammary gland by increasing the diameter and the lumen of alveoli, and displaying an abundant eosinophil secretion in lumen of alveoli. Such results have been previously observed by authors [30,31,32], who reported that estrogen-like substances (phytoestrogens) are well known to belong to several chemical classes identified in this plant such as steroids, triterpenes and flavonoids.

IV. DISCUSSION

The aim of this study was to evaluate the estrogenic effects of *Pachystela brevipes* on the some estrogen primary targets, using a 3-day uterotrophic assay in ovariectomised rats. Our results showed that the decoction of stem bark of *P. brevipes* induced a significant estrogen-like activity on uterine, vagina and mammary gland. These results suggest that this extract is endowed with estrogenic properties and could justify it traditional used to alleviate vaginal dryness in postmenopausal women.

V. CONCLUSION

The authors are thankful to Guennang Ngitedem Steve and Awounfack Charline Florence, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, for technical assistance.

VI. ACKNOWLEDGMENT

The authors are thankful to Guennang Ngitedem Steve and Awounfack Charline Florence, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde I, for technical assistance.

VII. REFERENCES

