EFFECT OF BENTONITE DOSAGE ON SHEAR BEHAVIOUR OF SAND-FLY ASH

Mahdi Keramatikerman
Engineer, Arup Australia, 61-73 Sturt Street, Suncorp Tower, Townsville QLD 4810, Australia

Amin Chegenizadeh
Senior Lecturer, Department of Civil Engineering, Curtin University of Technology, Kent Street, Bentley, Perth, Western Australia 6102, Australia

Hamid Nikraz
Professor, Department of Civil Engineering, Curtin University of Technology, Kent Street, Bentley, Perth, Western Australia 6102, Australia

Abstract— Bentonite addition to soil sometime will be dealt as stabilisation. Shear behaviour of soil always has a great importance on engineering design. This study considers direct shear test on mixture of sand-flyash-bentonite. The direct shear device was employed with shear rate of 0.3 mm/min and peak shear stress at failure of each specimen were recorded. The normal stress was applied as 150 kPa, 250 kPa, and 500 kPa. Addition of bentonite caused decreasing in peak shear.

Keywords— Shear, Flyash, Bentonite

I. INTRODUCTION

Sand is one of the main type of soils which has been in direct attention of researchers due to its abundant existence in various sites [1-4]. Application of mining waste is of interest due to the help to remove waste from landfill and at the same time putting it into soil to get benefit out of this. In general, additives have specific role in making soil stable [5-9]. There are examples in literature fibre, geo-grid, tire, lime, fly ash or agricultural waste [10-18]. Apart from experimental testing, numerical modelling also been conducted on pavement application of those materials [20-23]. In addition, sometime the issue is relevant to contamination which can be seen in [24-28] or effect of directional issue [29-33]. As can be seen the interest of usage of other materials [34-37]. Bentonite is also one of the most applicable types of soil in the industry [38-42]. Bentonite is an expansive type of clay [42-49]. This study focuses on how Portland cement would affect the performance of fly ash by itself as a soil replacement.

II. MATERIALS

The employed materials can be listed as:

The characteristics of fly ash can be found in the table below. The major component of used fly ash is SiO2 and Al2O3. Silicon dioxide (SiO2) 51.8%, Aluminum oxide (Al2O3) 26.40%, Ferric oxide (Fe2O3) 13%. The sand which was used in this study referred as yellow sand. The SG was 2.65. The median size of particle was 1.2mm. The bentonite was expansive, and the median size was 36μm.

III. COMPACATION TESTING

In the first stage, the compaction values were derived. The results of compaction can be seen in the Table 1:

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Bentonite</th>
<th>OMC %</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-F2</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>S-F2</td>
<td>5</td>
<td>16.2</td>
</tr>
<tr>
<td>S-F2</td>
<td>7</td>
<td>19</td>
</tr>
<tr>
<td>S-F2</td>
<td>10</td>
<td>20.4</td>
</tr>
</tbody>
</table>
IV. SHEAR TESTS

Direct shear test run with 0.3 mm/min. The samples were prepared in accordance with OMC and MDD of mixes. The results of peak shear stress at failure relevant to 150kPa with can be seen in the following figure. The below Fig. 3 is related to 150kPa shear stress at failure.

The below Fig. 4 is related to 250kPa shear at failure.

The below Fig. 5 is related to 500 kPa shear stress at failure for different specimen.
A series of shear and compaction tests were conducted on the mixes and the result proved that bentonite increased the shear stress at failure. Compaction results showed the OMC increased by addition of bentonite and MDD increased at the same time.

V. CONCLUSION

VI. REFERENCE


