
 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 4, Issue 12, ISSN No. 2455-2143, Pages 624-627
 Published Online April 2020 in IJEAST (http://www.ijeast.com)

624

ONLINE EXAMINATION WITH FACE

RECOGINATION
Nikhil Sharma, Aditi Garg, Aviral Aeron, Faraj Chisti

Department of IT, ABES Institute of Technology,
Ghaziabad (U.P.), India

ABSTRACT - In this paper, we present a

benchmark of the Local Binary Patterns

Histogram (LBPH) algorithm together with

Open CV and Python. We wanted to indicate

that these techniques are often used for a real-

time application. The most a part of this work

will describe the architecture similarly because

the implementation of the detection and

recognition application.

Keywords - Real-time Systems, Face Detection,

Face Recognition, Benchmark.

I. INTRODUCTION

Face detection and face recognition are often

employed in various real-world application fields.

This might be face tracking during a live broadcast

of sport event or person identification at the airport

border control. Another field of application can be

action publicly places using the image data of

surveillance cameras. Both examples need a quick

detection and recognition algorithm because the

results of detecting and recognizing a face are

important for further processing.

A. Face Detection

The primary interface of Open CV is written in

C++. There are now full interfaces in Python, Java

and MATLAB. Wrappers in other languages like

C#, Perl and Ruby are developed. A CUDA-based

GPU interface has been ongoing since 2010. Open

CV has in received support from Intel and recently

it's received support from willow garage, a
privately funded new robotic research institute.

Opens can run on different platforms like windows,

android.

Fig. 1. Haar-like features

The rapid detection is finished by employing a

cascade classifier (fig. 2). The image is segmented

in sub- windows and only some features are

checked at the start.

 Fig. 2. Detection cascade T=true; F=false

B. Face Recognition

It is another phase, where the detected face image

is compared with images within the database of

faces. The opens framework contains the inbuilt

face detector that may work 90-95% on the clear

images. It’s slightly difficult to detect a face if an

individual wearing glasses or a picture is blurring.

In fig. 3 an example image is given in a very. This

image is already screened in sections. Our

application for benchmarking will display a colored

image sequence but analyze only the desiderated

grayscale image.

Fig. 3. LBPH analysis

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 4, Issue 12, ISSN No. 2455-2143, Pages 624-627
 Published Online April 2020 in IJEAST (http://www.ijeast.com)

625

II. ALGORITHM IMPLEMENTATION

Before a benchmarking of the Open CV algorithms

can be performed, software had to be developed

which implements the face detection and

recognition algorithm. Implementing the popularity
algorithm requires to also implement Open CV’s

face trainer. This led to whole software which had

to be developed with the subsequent features:

1.Read within the video stream from a camera

which is connected to the pc.

2.Detect a face within the current frame of the

image sequence

A graphical representation of the implemented

features and software architecture are often seen in

fig. 4.

 Fig. 4. Software Architecture

III. IMPLEMENTATION DETAILS

REGARDING SPEED

The complete software was written in Python and

executed in a very Python V.2.7.11 environment.

The Open CV algorithms are written in C++ and

were called using the Python application. The
timing overhead which occurs when calling the

libraries from within the Python application are

often neglect, additionally all the algorithms which

are benchmarked are written in C++ and were

compiled to binaries for the particular system

Fig. 5. Face recognizer application developed to

benchmark the face detection and recognition

process

IV. FACE DETECTION

Generally developing applications which detect a

face is incredibly easy when using Open CV. The

detection itself is simply one line of code; the”

configuration” of the face detector is additionally

quite lightweight. In line two the file with the haar-

cascades is loaded into the RAM disk. This can be

an XML based file which holds pre- trained

information necessary to detect an individual's face.

Loading another cascade classifier ends up in

detecting other objects, as an example a dog’s face.

V. BENCHMARKING

As already described in section II-D the face

detection and also the face recognition is

essentially performed with only 1 command.

Therefore, the benchmarking consists of measuring

the execution time of the particular command

which starts the detection and recognition.

Measuring the execution time can

programmatically be performed in simple steps:

1)Get current time (by asking the OS) and store it

as start time

2)Run the function or method whose execution

time should be determined.

VI. PERFORMING THE BENCHMARK

Preconditions

When performing the benchmark several important

preconditions had to be ensured:

 Illumination conditions need to be the

identical for training the recognizer and
for running the recognizer

 Training the recognizer was done from

live camera stream

 Benchmarking on devices

To get a control about the execution time of the

face detector and recognizer the concept was to run

the identical tests on several devices. This shows

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 4, Issue 12, ISSN No. 2455-2143, Pages 624-627
 Published Online April 2020 in IJEAST (http://www.ijeast.com)

626

whether the algorithms support multi core systems
(” increasing number of cores, the faster the

execution becomes.

VII. RESULTS

The benchmarking of the applying was done

separately for the detection similarly as for the

popularity phase. For all recognizer test cases in

table II the camera resolution was specified to

800*600 pixels and also the samples of two persons

were used (fig. 7). The identical camera resolution

was used for the face detector.

The benchmark of the detection innovate

fig. 8 shows that the ThinkPad is that the fastest of

the machines followed by the Mac Book Air and

Mac Book.

VIII. CONCLUSION

The computational models, which were

implemented in this project were chosen after

extensive research and the successful testing results

confirm that the choices made by the researcher

were reliable. The system with manual face

detection and automatic face recognition did not
have a recognition accuracy over 70% due to the

limited number of eigen faces that were used for

the PCA transform. This system was tested under

very robust conditions in this experimental study

and it is envisaged that real-world performance will

be far more accurate.

In this we present a collection of Python biometric

performance benchmark algorithms called OpenCv.

The algorithms are fast enough to be useful in

realtime systems however, improving performance

would allow the algorithms to process more

images.

The fully automated frontal view face detection

system displayed virtually perfect accuracy and in

the researcher's opinion further work can be

conducted in this area for increased performance

and accuracy.

IX. REFERENCES

[1] OPEN CV DEV TEAM, Face Recognition

with OpenCV, Mar 09,2016

[2] VIOLA, JONES: Rapid Object Detection using

a Boosted Cascade of Simple Features,

2001

 [3] AHONEN, HADID, et al., Face Recognition

with Local Binary Patterns, ECCV 2004

http://uran.donetsk.ua/ mas-

ters/2011/frt/dyrul/library/article8.pdf

[4] The Python 2.7.11 Standard Library: Generic

Operating System Services

https://docs.python.org/2/library/time.html

[5] David M. Beazley, Python Essential Reference,

EAN: 9780768687026, Editor: Pearson Education

[6] Seeing with OpenCV, Article,

http://www.cognotics.com/opencv/servo_2007_seri

es/part_1/index.html,

http://www.cognotics.com/opencv/servo_2007_series/part_1/index.html
http://www.cognotics.com/opencv/servo_2007_series/part_1/index.html

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 4, Issue 12, ISSN No. 2455-2143, Pages 624-627
 Published Online April 2020 in IJEAST (http://www.ijeast.com)

627

 Published by Robin Hewitt, 2010

[7] OpenCV Homepage,

http://opencv.willowgarage.com

[8] Face Recognition Homepage, http://www.face-

rec.org/algorithms/

[9] Wikipedia, Three-dimensional face

recognition,http://en.wikipedia.org/wiki/Three

dimensional_face_recognition

[10]Wikipedia, Active appearance model,

http://en.wikipedia.org/wiki/Active_appe

arance_model

[11] Face Detection and Recognition using

OpenCV, Article,

http://shervinemami.info/faceRecognition.html,

Published by Shervin Emami, 2010

[12] Shervin Emami, Rotating or Resizing an

Image in OpenCV,

http://shervinemami.info/imageTransfor ms.html

http://opencv.willowgarage.com/
http://www.face-rec.org/algorithms/
http://www.face-rec.org/algorithms/

