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Abstract— In this paper, some globally supported radial basis 

functions (RBFs): multiquadrics (MQ), inverse quadratics 

(IQ) and generalized inverse multiquadrics (GIMQ) were 

combined with the fourth order Runge-Kutta method in 

developing radial basis function method of lines. The RBFs 

were used to discretize the space variable, while the fourth 

order Runge-Kutta method was used to integrate the system 

of ordinary differential equations (ODEs) emanating from the 

space discretization. The RBF-MOLs were implemented in 

MATLAB and applied to approximate the solutions of a third 

order, fourth order and fifth order linear time-dependent 

partial differential equations. The numerical results showed 

good approximations when compared with the exact 

solutions, however, the MQ-RBF-MOLs produced the best 

approximations. 
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I. INTRODUCTION 

Time-dependent partial differential equations (PDEs) are used 

in modelling different evolutionary problems in engineering 

and mathematical sciences. Most time-dependent PDEs of 

interest contain higher order derivatives. Many analytical and 
semi-analytical methods have been developed for solving 

higher order time-dependent PDEs, however, it is important to 

develop accurate numerical methods which provide an 

alternative means of obtaining approximate solutions in 

situations where both the analytical and semi-analytical 

methods may fail. Over the years, numerical methods such as 

finite difference method (FDM), finite element method (FEM), 

finite volume method (FVM) and some pseudospectral/spectral 

methods have been applied to approximate some higher order 
time-dependent PDEs. 

Radial basis function (RBF) methods are meshless and 

spectral methods that have become viable numerical methods 

for solving PDEs [1, 2, 3, 4]. Kansa [5, 6] was the first to apply 

RBF collocation method using multiquadric RBF method to 

approximate the elliptic, hyperbolic and parabolic PDEs. His 

pioneer work paved way for a research boom in different 

scientific computing communities such as computer graphics, 

data processing [7], economics [8] etc. besides numerical 

solutions of PDEs. RBFs can either be independently applied to 

approximate problems or combined with other numerical 
methods to form accurate hybrid methods. 

Tatari and Dehghan [9] explained that if time and space 

variables are discretized using RBFs, the resulting coefficient 

matrix may be ill-conditioned, this may affect the accuracy of 

the results. They suggested that time-dependent PDEs can be 

discretized in space using RBF methods which will reduce the 

PDE to a system of ordinary differential equations (ODEs), 

while the system of ODEs can be solved using an ODE solver. 

The process of solving a PDE by first discretizing the space 

variable(s) and integrating the resulting system of ODEs is 

referred to as the method of lines (MOLs) [10].  If RBF 

methods are used for space discretization, the MOLs is referred 
to as RBF-MOLs [2, 4]. 

Sarra and Kansa [2] formulated an RBF-MOLs for solving 

some time-dependent PDEs in one and two space dimensions. 

They used the multiquadrics (MQ) RBF method for space 

discretization, while the system of ODEs was integrated using 

the fourth order Runge-Kutta method. Luga et al.[11] also 

formulated some RBF-MOLs using some globally supported 

and positive definite RBFs such as the inverse multiquadrics 

(IMQ), inverse quadratics (IQ) and generalized inverse 

multiquadrics (GIMQ) RBF methods. They applied the RBF-

MOLs to solve the one-dimensional cubic Schrodinger PDE 
and compared their results with the work of [2]. Their proposed 

methods compared favourably. Similarly, [12] obtained some 
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test problems on second order time-dependent PDEs from [2] 

and applied the IMQ-RBF-MOLs, IQ-RBF-MOLs and GIMQ-

RBF-MOLs to approximate them, they observed that their 
results were in good agreement. 

Our motivation comes from the works of [11, 12]. They 

proposed some RBF-MOLs using IMQ, IQ and GIMQ and 

applied them to solve second order time-dependent PDEs in 

one-dimension. In this paper, we wish to extend their methods 

to solve third order, fourth order and fifth order time-dependent 

PDEs. We shall also extend the RBF-MOLs of [2] to solve 

higher order linear time-dependent PDEs. The aim is to 

compare the performance of the IQ-RBF-MOLs and GIMQ-

RBF-MOLs with MQ-RBF-MOLs using higher order time-

dependent PDEs in one space dimension, since the IQ and 

GIMQ RBFs are rarely applied to solve or formulate numerical 
methods. 

II. METHODS 

In this section, the differentiation matrices of the 

multiquadric (MQ), inverse quadratic (IQ) and generalized 

multiquadric (GIMQ) radial basis functions (RBFs) used for 

space discretization of time-dependent PDEs are presented. 

Since the differentiation matrix of an RBF depends on an 

evaluation matrix which in turn depends on an interpolation 

matrix, we shall first discuss them. The algorithm for the space 

discretization as well as the fourth order explicit Runge-Kutta 

method used for integrating the ODEs that emanate from the 
space discretization is also stated here. 

Radial Basis Function (RBF) Interpolation 
Since the space discretization of one-dimensional time-

dependent PDEs, we shall first make an assumption that the 

unknown function  can be approximated using the 

interpolant , i.e.   

 
where ,  are 

scattered set of data while  are function values 
obtained from scattered data which represents the unknown 

function. The interpolant is defined by  

 
where  and  denote the Euclidean norm on  and a 

linear space containing all real valued polynomials in  

variables of degree at most . 
The IQ and GIMQ RBFs are positive definite so no 

polynomial term is required to make their interpolation matrices 

invertible. Although the MQ RBFs is conditionally positive 

definite and requires a polynomial term of degree one to be 

appended to its interpolation matrix to make it invertible, [13] 

and [3] observed that conditionally positive definite RBFs of 

order 1 such as the MQ can be used without appending the 

constant term, yet its interpolation matrix can be non-singular. 

To this end, we use the interpolant of the form  

 
 for each . 

Interpolation Matrix of Positive Definite RBF Methods 
The interpolation matrix of a positive definite RBF method 

can be formed by substituting equation (2.3) in equation (2.1), 

expanding and writing it in matrix form as shown below 

 
for each . In matrix form, equation 
(2.4) can be written as  

 
or  

 
The entries of the matrix  are called the basis functions of an 
RBF method, they are generated from a function called the 

basic function. The MQ, IQ and GIMQ come from a family of 

RBFs called generalized multiquadric (GMQ) RBFs. The basic 

function of the GMQ RBF is given by  

 
where , for each .  

2.1.1 Interpolation Matrices of MQ, IQ and GIMQ RBFs 

    

The basic functions of the MQ, IQ and GIMQ RBFs are defined 

by substituting  respectively, i.e.  

 

 

 
Substituting (2.8), (2.9) and (2.10) in (2.5) provides the 

following interpolation matrices for MQ, IQ and GIMQ RBFs 
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Evaluation Matrices of Positive Definite RBF methods 

To get the evaluation matrix of an RBF, first , 

 is obtained from the interpolation matrix (2.5) 

and the interpolant (2.3) is evaluated at  point , using an 

 evaluation matrix  which has the entries  

 
for each . According to Fasshauer 
(2007), symmetric matrices are invertible, thus we shall take 

the number of data points to coincide with the number of 

centres so that we shall have symmetric evaluation matrices. 

Evaluation Matrices of MQ, IQ and GIMQ RBFs 

Using equation (2.11), (2.12) and (2.13), the evaluation 

matrices of the various RBFs namely MQ, IQ and GIMQ can 

be obtained by first finding ,  in each case and 

evaluating at  points for  using equation (2.3) so 
as have symmetric evaluation matrices. 

Differentiation Matrix of RBF Methods 
Differentiation matrices are used to discretize the 

derivatives of a PDE of interest. The differentiation matrices 
are obtained by first differentiating the interpolant (2.3) the 

required number of times 

 

 
     

 

Evaluating equation (2.17) at the centres  leads to  

 

where the derivatives of the evaluation matrix is an  

matrix denoted by  with the entries  

 
for each . 
In this paper, we denote the first five partial derivatives of the 

evaluation matrix as and  
respectively. 

Making  the subject of the formula from equation (2.6) gives  

 
Substituting equation (2.20) into (2.18) gives  

 
or  

 
or 

 
This implies that  

 
Equation (2.24) represents the differentiation matrix of RBF 

methods. It is defined if the differentiation matrix  is 

invertible. The derivatives of the unknown function  can 
be approximated using  

 
 

First Five Derivatives of the Radial Basis Functions 

The first and second derivatives for any sufficient differentiable 

RBF  are  

 

 
Using equations (2.26) and (2.27), we provide the derivatives 

for the third, fourth and fifth derivatives 
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where  

 

 

 

 
where  

 
and 

 

 
Furthermore 

 

 
and  

 

If equations (2.8), (2.9) and (2.10) are substituted in equations 

(2.26) – (2.30), then the various derivatives of the MQ, IQ and 

GIMQ RBFs can be obtained. 

Existence and Uniqueness of Interpolation Matrix of Radial 

Basis Functions 

The existence and uniqueness of an RBF interpolation 

problem is guaranteed if its interpolation matrix is invertible 

[2], however, it is difficult to characterize the class of all basis 

functions  that can generate non-singular interpolation 
matrices. An alternative is to show that the basis functions form 

positive definite matrices [14]. Schoenberg and Fourier series 
methods can be used to characterize positive definite matrices, 

nevertheless, these methods are not easy to compute. To this 

end, two criteria (i) Completely Monotone Functions and (ii) 

Multiply Monotone Functions are used to determine that a 

function is strictly positive definite and radial on  

 Definition 2.1 Completely Monotone Functions (Fasshauer, 

2007) 

A function 0,  that is in  
and satisfies  

 
is completely monotone on  

Theorem 2.1 (Fasshauer, 2007) 

A function  is completely monotone but not 

constant if and only if  is strictly positive definite and 

radial on  for any . 

Definition 2.2 Multiply Monotone Functions (Fasshauer, 

2007) 

A function 0,  which is in ,  

and for which  is non-negative, non-increasing 

and convex for  is called  times 

monotone on . In case , we require that 

 be non-negative and non-increasing 

Theorem 2.2 (Sarra and Kansa, 2009) 

 Let  and  for , let 

 be completely monotone and non-constant on  

Then for any set of  distinct centres , then the  

matrix  with entries  is invertible, such a 

function is said to be conditionally positive definite of order 1. 

For details about the invertibility of the MQ RBF, [2] may 

be consulted, while the invertibility of the IQ and GIMQ RBFs 

is shown in [3]. Any function of the form  

 
is completely monotone on  since  
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If  in equations (2.32) and (2.33), then IQ and 
GIMQ are shown to be invertible. 

2.6 An Algorithm for Discretizing Space Variable(s) 

via RBF-MOLs 
Consider a PDE of the form  

 
where  

 spatial derivative operator. 

Let  be centres 

obtained from the given domain . We restrict , since 
we are dealing with one-dimensional problems. 

The approximate solution  for a time-dependent PDE can 
first be expressed as  

 
where  represent coefficients to be 

determined,  represent a radial basis function and  are the 

centres. Applying the operator  on both sides of equation 
(2.35) yields  

 
in matrix form, equations (2.35) and (2.36) can be written as  

 
and  

 
where  

 
and  

 
From equations (2.37) and (2.38), we get  

 

 
After the space discretization with RBFs, equation (2.35) is 

transformed into a semi-discretized system defined by  

 
Next, the resulting system of ODEs from equation 

(2.40)are integrated using the forth order explicit Runge-Kutta 

method. 

Algorithm for Fourth Order Explicit Runge-Kutta Method 

The fourth order explicit Runge-Kutta method for 

integrating the system of ODEs from equation (2.40) is given 

below.  

Suppose , then  

 

 

 

 

 

III. RESULTS 

In this Section, the RBF-MOLs developed in Section 2 will be 

applied to approximate a third, fourth and fifth order one-

dimensional time-dependent PDEs. The methods are 

implemented in MATLAB 2007b on Windows 8 operating 

system and the results are displayed on Graphs and Tables for 

comparison and discussion. All the test problems a drawn from 

[15]. 

Example 1: The linear KdV equation  
The linear KdV equation with a third order space derivative is 

defined by 

 
on the domain 

, 
with the initial condition 

    
and boundary conditions 

 
The exact solution is given by 

 
Equation  is discretized in space using the MQ, IQ 

and GIMQ RBFs with  uniformly distributed centres. 
The resulting systems of ODEs are solved using the fourth 

order Runge-Kutta method with a small time-step 

. The results for the various RBF-MOLs are 
provided in Table 1, while Fig. 1 is the graphical representation 

of the results. 
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Fig. 1: The Exact Solution versus the Numerical Solution using (a) 

IMQ RBF-MOLs, (b) IQ RBF-MOLs, (c) GIMQ RBF- 

MOLs for Example 1  

Table 1: Summary of MQ, IQ and GIMQ RBF-MOLs for      

Example 1 

S/

N 

RBF-

MOLs 
                    MPE 
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Example 2: Linear Biharmonic Equation  

Consider the linear biharmonic equation 

 
on the domain 

, 

with the initial condition 

    

and the boundary conditions 

 
The exact solution is given by 

 
The MQ, IQ and GIMQ RBFs were used to discretize 

Example 2 in space on a uniformly spaced node, . The 

resulting systems of ODEs are integrated using the forth order 

Runge-Kutta method with a time step of . 

Fig. 2 shows the graphical results at the 200th time step while 

Table 2 displays the numerical results of the various RBF-

MOLs 
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Figure 2: The Exact Solution versus the Numerical Solution using 

(a) IMQ RBF-MOLs, (b) IQ RBF-MOLs, (c) GIMQ 

RBF- MOLs for Example 2 

 

Table 2: Summary of MQ, IQ and GIMQ RBF-MOLs for 

Example 2 
S/

N 

RBF-

MOLs 

𝑵 ∆𝒕          𝑭𝑻    𝜺         MPE 

 

1 

 

MQ 

𝟐
𝟏

 

 𝟓
.𝟎

×
𝟏
𝟎
−
𝟕
  

 

𝟏.𝟎 × 𝟏𝟎−𝟒 

𝟏
.𝟗
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 Example 3: A fifth order linear time-dependent PDE  

Consider the linear time-dependent PDE that contains a 

fifth order derivative in  space 

 
on the domain 

, 
with the initial condition 

    
and the boundary conditions 

 
The exact solution is given by 

 
The space discretization of Example 3 is obtained via the 

MQ, IQ and GIMQ RBFs on uniformly distributed collocation 

points, . A small time-step  is used to 
advance the system of ODEs emanating from the space 

discretization using the fourth order Runge-Kutta method. 

Table 3 shows the numerical results while Fig. 3 displays the 

graphical results of the exact and the numerical solutions. 
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Figure 3: The Exact Solution versus the Numerical Solution using 

(a) MQ RBF- MOLs, (b) IQ RBF-MOLs, (c) GIMQ 

RBF- MOLs for Example 3 

Table 3: Summary of MQ, IQ and GIMQ RBF-MOLs for 

Example 3 
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S/

N 

RBF-

MOLs 

𝑵 ∆𝒕          𝑭𝑻    

𝜺 

        MPE 

 

1 

 

MQ 
𝟑
𝟏

 

 𝟓
.𝟎

×
𝟏
𝟎
−
𝟕
  

 

𝟏.𝟎 × 𝟏𝟎−𝟒 

𝟎
.𝟗

 

 

 

   3.310𝟎 × 𝟏𝟎−𝟑 
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𝟏
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𝟓
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𝟏
𝟎
−
𝟕
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.𝟒

 
 

 

 

𝟓.𝟕𝟎𝟎𝟎 × 𝟏𝟎−𝟑 

 

IV.  DISCUSSION 

Example 1 is a linear KdV time-dependent PDE with a 

third order space derivative. The numerical solution of this 
problem was obtained by first discretizing the space derivatives 

using MQ, IQ and GIMQ RBFs with equally spaced 

centres,  on the domain . A suitable 

estimate for the shape parameter  were 

found for the MQ, IQ and GIMQ RBFs respectively using the 

brute force method. A single differentiation matrix was used to 

discretize the entire space derivatives since this is a linear 

problem. After an extensive experimentation using different 

time-steps, a time step of   was used to 

advance the solution of the resulting systems of ODEs in time 

up to the 200th time level using the fourth order Runge-Kutta 

method. Table 1 shows the numerical values of the results 

while Fig. 1 displays the plots of the numerical solution and the 

exact solution. We observed that the point-wise errors for the 

three RBF-MOLs are within the same range, i.e. at a final time, 

, the maximum point-wise error of the 

MQ, IQ and GIMQ RBFs are given as 

 

respectively. Fig. 1 which provides the plots of both the exact 

and numerical solutions show that the various RBF-MOLs for 

this problem gave accurate approximations.  

A linear biharmonic equation containing a fourth order 

derivative in space forms Example 2. To find an approximate 

solution to this example using RBF-MOLs, the MQ, IQ and 

GIMQ RBFs were used for the discretization of the space 

derivatives on the domain which was divided into 

 equally spaced centres. The brute force method was 

used to estimate the shape parameters for the various RBFs as 

 respectively. As a linear time-dependent 

PDE, the entire space derivatives were discretize using a single 

differentiation matrix. we choose a time-step of   

and used it to integrate the systems of ODEs at 200th time level 

using the 4th order Runge-Kutta method. The results are 

displayed in Table 2 and Fig. 2. Table 2 reveals that the 

maximum point-wise error for the three RBF-MOLs at the 

different time level were observed to be within the same range. 
For instance, the maximum point-wise error of the MQ, IQ and 

GIMQ RBF-MOLs are given as 

 and  

respectively. Fig. 2 show that the various RBF-MOLs provide 

good approximation of Example 2.  

The efficiency of the MQ, IQ and GIMQ RBF-MOLs was 
tested on a linear time-dependent PDE that contains a fifth order 

space derivative.  equally spaced centres were used to 

subdivide the domain while the various RBFs were 
applied to discretize the space derivatives. Fig. 3 shows that the 

various shape parameter obtained by the brute force method 

were  respectively. The Runge-Kutta fourth 
order method was used to integrate the system of ODEs arising 

from the space discretization using a time step of  

. Fig. 3 shows the various plots of the exact 
solution and the numerical solutions as well as the point-wise 

error for all the three RBF-MOLs. The following maximum 

point-wise error,  and   

 for the IMQ, IQ and GIMQ RBF-MOLs at the 
200th time level recorded in Table 3 showed that the maximum 

point-wise error lie within the same range. 

V.  CONCLUSION  

Some radial basis function method of lines (RBF-MOLs) 

namely, the MQ-RBF-MOLs, IQ-RBF-MOLs and the GIMQ-

RBF-MOLs were developed for solving some higher order one-

dimensional time-dependent PDEs. The MQ-RBF-MOLs is the 

extension of the work of Sarra and Kansa (2009), while the IQ-

RBF-MOLs, and GIMQ-RBF-MOLs is the extension of the 

work of Luga et al. (2017a & 2017b) to solve higher order 
dimensional problems. Three test problems on a third, fourth 

and fifth order time-dependent PDEs in one-dimension were 

used to validate the performance of the developed RBF-MOLs. 

The point-wise error from the results revealed that the three 

RBF-MOLs provided good numerical approximations of the 

exact solutions, however, the MQ-RBF-MOLs provided the 

best approximations. 
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