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Abstract— Throughout the life of a field, the only way 

to make contact with the reservoir is through the wellbore 

by making indirect data measurements. These data 

acquired during the measurement period is analyzed and 

interpreted in other to have a better understanding of the 

reservoir characteristics. There are several methods of 

estimating reservoir properties such as core analysis and 

well logging which are only able to obtain properties at a 

local point. But, well testing present an average property 

of the whole reservoir as the reservoir responds to the 

perturbation caused during the test period. This study 

developed an artificial neural network algorithm that was 

trained to automatically identify four different reservoir 

models (the homogenous infinite acting radial flow with 

wellbore storage reservoir, homogenous reservoir with a 

finite conductivity fracture, homogenous reservoir with an 

infinite conductivity fracture and a double porosity 

reservoir with no wellbore storage effect) and estimate the 

model parameters (permeability, skin factor, reservoir 

radius, flowing wellbore pressure and/or the length of the 

conductivity fracture). The algorithm was constrained to 

four models because of the unavailability of well test data 

that represent the other plethora of reservoir models. The 

accuracy of the algorithm on reservoir model recognition 

was 99.5% and also, the reservoir model parameter 

estimation had an index of fitness of 1 for the four 

reservoirs and the mean squared error of 2.62653e-10, 

3.29122e-8, 1.05805e-5 and 2.19763e-6 respectively. It is 

then concluded that an artificial neural network is a good 

tool for well test analysis and interpretation. And that it 

saves both the time and energy of the interpreter when 

compared to convention methods thereby providing 

enough time for proper engineering judgment. 

Keywords— Well test, well test analysis, well test 

interpretation, artificial Intelligence; artificial neural 

network. 

I.  INTRODUCTION 

Over the years, well test analysis has been used to assess 
and ascertain wellbore conditions and obtain reservoir 
parameters. Throughout the life of a field, the only way to 
make contact with the reservoir is through the wellbore by 
making indirect data measurements. These data acquired 
during the measurement period is analyzed and interpreted in 
other to have a better understanding of the reservoir 
characteristics. 

The extent, quality and what is expected from a well test 
analysis and interpretation are limited to the state-of-the-art 
available both in data acquisition and data analysis [1]. He 
also added that as data acquisition improves and better 
interpretation methods are developed, more and more useful 
information can be extracted from a well test data. 

Aforetime, the traditional well test has been time-
consuming and costly to perform, as production has to be 
stopped (loss of production time) for buildup tests and tools to 
be lowered into the well each time a well-test should be 
performed, however, the increased utilization of permanent 
gauges for continuous measurements has made the task of 
obtaining data for well-test analysis nearly straightforward 
such that well-test can now be done continuously with 
measured pressure and rate signals. Furthermore, the 
introduction of computers made the processing of the 
measured pressure and rate signal easier and well-test analysis 
was both improved and accelerated. Due to this continuous 
measurement of the pressure and rate signals, additional 
information about the reservoir and the wellbore can be 
derived in a more cost-effective manner and frequent way than 
it was before.  

Well-test analysis and interpretation methods have evolved 
and been developed overtime. The analysis methods started 
from the straight-line method to the pressure type curve 
analysis to the type curve with independent variables and to 
the derivative plots and most recently the deconvolution 
algorithm [1]. Before the late 1970s, all well-test analysis 
methods were done by hand with the use of paper, pencils, and 
graphs. The application of computerized algorithms to the 
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analysis and interpretation process began in the late 1970s 
which made the process easier and more effective for the 
interpreter [1]. According to Horne (1994) [2], the expansion 
in interpretation capability over the years aroused mainly from 
the development of computer-aided techniques. Each of the 
established methods was developed in other to overcome the 
limitations of the previous methods developed before it. 

There are two main objectives when analyzing and 
interpreting well-test data. These objectives are to diagnose 
the underlying conceptual reservoir model and to estimate the 
model-related parameters [3,4,5,6]. The non-uniqueness 
problem, however, brings about the confusion in selecting the 
correct reservoir model using conventional approaches [1,6]. 
To meet these objectives stated above, different technologies 
and algorithms have been implemented. [6], [7], [8], [9], and 
[10] all used a different form of artificial neural network 
(ANN) to achieve the above-stated well-test objectives.  

However, many approaches have been developed to 
investigate well-testing reservoir model identification using 
artificial intelligence (AI) techniques but only a few techniques 
have been developed to estimate the model-related parameters 
[6]. This paper aimed at developing an artificial neural network 
algorithm that analyzes and interprets a well test data 
automatically. 

1.1. Reservoir Model Identification 

In the words of Horne (1994) [2] I quote, ‘Because the 
underlying principle of well-test interpretation is to match a 
mathematical model to an observed reservoir response, it is 
necessary first to decide which mathematical model, out of the 
plethora available is most appropriate to the actual reservoir’. 
Also, a correct well-test interpretation model is the basement 
of well-test analysis which is identified by the feature of 
pressure derivative curves [11]. In addition, correct model 
identification is an essential component of well-test 
interpretation, if the model is wrong, the resulting parameter 
estimates are useless [6]. 

Therefore, in other to prevent a futile job of interpreting a 
pressure transient data based on the wrong model, different 
researchers have developed and proposed different ways of 
identifying the reservoir models.  

[12] proposed a graphical analysis method using the 
pressure derivative plot and it has become a standard 
procedure for reservoir model recognition. The development 
of computer-aided interpretation algorithms has increased over 
the years. However, [13] stated that computers have mainly 
been used to solve the easiest part of the interpretation 
process. And that the most difficult parts namely, reservoir 
model identification and validation of the analysis have 
received little attention. He also added that most computer 
approaches only aim at reproducing or facilitating the manual 
process and are not capable of bringing much improvement in 
analysis capability. And that some computer approaches, on 
the other hand, involve the use of black-box regression 
packages coupled to a series of interpretation models and can 
be dangerously misleading. 

In an attempt to automate the well-test model recognition 
process, [7] gave the first attempt using artificial intelligence 
techniques. They employed syntactic pattern recognition and 
rule-based models from the pressure derivative plots. 

 [15] implemented feature extraction in a hyper-stack that 
used the human operator to describe features of the data. Also, 
[7] used a symbolic representation approach achieving feature 
extraction by developing a sketch of the data. 

The neural network approach has the advantage of being 
insensitive to noise and can recognize the reservoir model 
despite intervening non-idealities in the data. Anyways, the 
disadvantage of the neural network approach is that it has no 
vision of the characteristics of the data and therefore allows no 
further reasoning as to which part of the data is associated 
with specific reservoir flow regimes. However, [16] described 
a hybrid approach in other to automated the model recognition 
process and overcome the disadvantages of conventional 
methods. 

Furthermore, [8] used a modular neural network to identify 
different model classes. Also, [9] proposed a similar method 
that uses multiple neural networks with each network 
representing a single conceptual reservoir model. This is to 
overcome the disadvantages of using a single comprehensive 
neural network for covering all possible reservoir models.  

However, [2] stated that various reservoir and well 
configurations have easily recognizable characteristics on a 
pressure derivative plot and that this one-plot solution 
significantly expanded the possibilities for automation of 
model recognition. 

[3] proposed the use of a higher-order neural networks 
(HONN) instead of conventional multilayer perceptron (MLP) 
networks in identifying the well-test interpretation model 
regarding both scale and translation invariance of the well-test 
model to field data.  

Similarly, [17] in their work developed a method based on 
an ANN that uses Kohonen’s self-organizing feature (SOF) 
mapping technique to identify well-test interpretation models. 

Also, [18] suggested the use of Hough transform (HT) as a 
unique technique for the extraction of the basic shape and 
motion analysis in noisy images, combined with the back-
propagation neural network to improve the well-test model 
identification. Furthermore, [11] proposed an ANN approach 
to automate the process of type curve matching and move the 
tested and move the tested curves to their sample positions. 
Unlike the previous approaches that used data point series as 
input vectors to train ANNs, the binary vectors of theory 
curves created by transferring the actual derivative curves into 
binary numbers were used as training samples to train the 
ANN. 

[6] applied different ANN methodologies including MLP, 
probabilistic neural network and generalized regression neural 
network to identify the well-test interpretation model and 
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estimate the model-related variables from the pressure 
derivative curves. 

Finally, identifying the conceptual or underlying reservoir 
models isn’t enough but also the reservoir and wellbore 
parameters associated with the identified model must be 
estimated as accurately as possible. 

1.2. Reservoir Model Parameter Estimation 

It could be said that the major aim of carrying out well 
testing is to obtain reservoir and wellbore parameters. These 
parameters, however, are attributed to the conceptual reservoir 
model and can be estimated to a high degree of accuracy if the 
accurate reservoir model has been chosen. According to [19], 
the reservoir parameter estimation problem has many issues to 
be addressed and these problems are parameterization of the 
system resolution and uncertainty tradeoff, data integration, 
inversion procedure and preservation of geological structures. 
However, he added that many works have been done on these 
areas but the problems are still far from being eliminated. 

Conventionally, reservoir parameters estimation algorithm 
is done using gradient-based optimization algorithms such as 
the quasi-newton [20], the Levenberg-Marquardt [21, 22], the 
steepest descent [23, 24], the conjugate gradient [25], and 
Gauss-Newton [26,27] methods.  

[18] proposed the use of a recursive estimation method 
which accurately estimates the parameters even amid sparse 
available data. This recursive method can also ascertain the 
quality of the estimated parameters.  

Furthermore, [29] instead of the conventional solutions in 
the time domain, explored the alternative of transforming the 
data into the Laplace domain and then fitted the model in the 
Laplace domain. 

In addition, [30] presented a robust and efficient least-
square algorithm for parameter estimation in well-test 
interpretation. The algorithm is a Levenberg-Marquardt with a 
trust region approach for global convergence along with 
restriction in the unknown parameters. 

[31] also, obtained reservoir characteristics with a well-test 
model equipped with modified Levenberg-Marquardt 
methods. Likewise, [32] proposed a robust way of achieving a 
well test interpretation by combining the sequential predictive 
probability method with an artificial neural network approach. 
The sequential predictive probability method considers all 
possible reservoir models and determines the candidate 
model(s) that best predicts the well responses. 

[19] proposed a new multi-resolution approach for the 
reservoir parameter estimation. They developed a model that 
integrated the wavelet analysis and nonlinear regression 
algorithm. The wavelet analysis is used to describe the 
distribution of sensitivity coefficients. This method is both 
reliable and efficient. 

Furthermore, [10] proposed an ANN approach to estimate 
different model parameters for the faulted reservoir. The 

network development begins with a single architecture and a 
few inputs and output features. The levels of complexity of the 
system are heuristically and gradually increased as more 
model parameters tend to be predicted by the network. 

[33] postulated a new methodology for the automated 
parameter estimation from well test data based on the type-
curve matching using the signal theory. It could be noted that 
the presences of noise in the well test data set does not affect 
the solution from this procedure and that it is faster compared 
to the conventional techniques. 

Similarly, [34] estimated reservoir (permeability) and 
wellbore (skin factor) parameter using a statistical approach to 
checkmate the quantitative interpretation of the derivative 
method. Also, [35] presented and compared three different 
grid-based inversion methods for the estimation of formation 
parameters and spatial geological feature identification based 
on pressure transient test data from multiple well locations. 
The first and the second methods employ efficient ad joint 
schemes to determine the gradient of the objective functions 
resulting in the most likely set of reservoir parameters and an 
ensemble of updated realization of parameters. The second 
method is based on the Langevin equation, while the third 
method uses the ensemble Kalman filtering for data 
assimilation, in which the outcome is an ensemble of 
parameter realization. 

In addition, [36] presented the use of local-global 
optimization (particle swarm optimization) method that 
generates multiple realizations of reservoir parameters at a 
coarse-scale. The method involves the use of a local search 
optimization algorithm to parameterize the model space at a 
coarse-scale followed by a stochastic search for better 
estimation in the vicinity of the local estimates. Due to the 
problem of the non-uniqueness of solutions to the inverse 
problems of which well-test analysis and interpretation are, 
regularization has been used to reduce the effects of non-
uniqueness [36].  

Finally, it is observed that different algorithms and 
procedures have been developed to estimate the reservoir and 
wellbore parameters over the years. 

II. METHOD/METHODOLOGY 

Because the underlying principle of well-test interpretation 
is to match a mathematical model to an observed reservoir 
response (model parameter estimation) it is necessary first to 
decide which mathematical model out of the many available is 
most appropriate to the actual reservoir (model recognition).  

Over the years, different methods such as type-curve 
matching, pressure derivative plots, etc. have been used to 
identify different reservoir models. In this study, an Artificial 
Neural Network would be used to achieve this purpose. The 
network would be trained on well test data already analyzed by 
well test experts. Due to the absence of sufficient well test data, 
the algorithm was trained to recognize only four reservoir 
types. These are the homogenous infinite acting radial flow 
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with wellbore storage reservoir, homogenous reservoir with a 
finite conductivity fracture, homogenous reservoir with an 
infinite conductivity fracture and a double porosity reservoir 
with no wellbore storage effect. 

2.1. Reservoir Model Recognition Artificial Neural 
Network Architecture (ANNA) 

A two-layered feed-forward network with a tanh-sigmoid 
activated hidden neuron and a softmax activated output 
neurons are used for model recognition in this paper. The 
network was trained with a scaled conjugate gradient 
backpropagated algorithm. Below is shown in figure 1 is the 
proposed neural network architecture; 

 

 

Figure 1: Model Recognition Artificial Neural Network 
Architecture 

The input layer accepts well test (pressure and time) data, 
the hidden layer is made up of 100 neurons while the output 
layer is made up of 4 neurons which represent the 4 different 
reservoir types covered in this paper. 

2.1.1. Tanh-Sigmoid Activation (Transfer) Function 

The tanh-sigmoid activation function takes an input into a 
neuron that has a value between plus and minus infinity and 
then squashes it to output a value between the range of negative 
one to a positive one (-1 to 1). Mathematically, the tanh-
sigmoid activation function is represented as; 

      (1) 

        (2) 

Where;  

z is the vector product of the neuron weight transposed (  

and the input value (x). 

 is the tanh-sigmoid transfer function.  

This transfer function is commonly in backpropagation 
networks, in part because it’s differentiable. Figure 2 below 
illustrates the tanh-sigmoid function; 

 

Figure 2:Graphic representation of the tanh-sigmoid transfer function 

2.1.2. Softmax Activation (Transfer) Function 

This function takes the input to the neuron (in this case 
output from the tanh-sigmoid hidden layer) and turns it into 
probabilities that sum to one. Softmax activation function 
outputs a vector that represents the probability distribution of a 
list of potential outcomes.  

Mathematically, the softmax activation function is 
represented as  

   (3) 

Where k is the total number of the potential output. 

The softmax function is represented graphically in figure 3 
below. 

 

Figure 3: Graphical representation of the softmax activation 
function 

2.1.3. Cost (Error) Function 

The cost (error) function is the function used to minimize 
the error between the output (result by the network) and the 
target (actual result). Because pattern recognition is a logistic 
regression problem that does with discrete values of true or 
false (1 or 0) the Cross-Entropy cost function was used to train 
the network. The Cross-Entropy function is given below; 

      (4) 

Where J(w) is the cost function, 

m is the number of training examples, 

 is the target vector of the training example i,  

is the output of the network for the training example i. 
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2.1.4.  Model Recognition Training Procedure 

The procedures with which the network was trained can be 

summarized in the following steps; 
i. Import or read the training data (time and pressure 

data of the well test) from excel data sheet to 

MATLAB as variables. 

ii. Preprocess the input data to prevent outliers 

iii. Indicate the number of input and output neurons in 

this case hundred (100 and 4 respectively). 

iv. Divide the input data randomly into three parts for 

training, validating and testing the algorithm (in this 

case the division was made in the ratio of 7:2:1) to 

prevent overfitting. 

v. Indicate the transfer functions for the input and 

output neurons (in this case the tanh-sigmoid and 
softmax function respectively). 

vi. Select the cost or error (in this case the Cross-

Entropy) function to be minimized. 

vii. Choose the training algorithm, in this case, the scaled 

conjugate gradient backpropagation. 

Train the network to meet the goal (until the cost function is 

minimized and the variables converge). 

 

2.2. Reservoir Model Parameter Estimation ANNA 

In other to estimate the parameter of the models that the 
recognition algorithm deemed fit to best represent the reservoir, 
a two-layered feed-forward network with a tanh-sigmoid 
activated hidden neuron and linear activated output neurons are 
used for parameter estimation. The parameters estimated by the 
model are reservoir permeability, skin factor, and reservoir 
radius of investigation, flowing bottom-hole pressure and the 
fracture length of fractured reservoirs. The network was trained 
with a Levenberg-Marquardt backpropagation algorithm. 
Figure 4 below, illustrates the proposed neural network 
architecture; 

Figure 4: Model Parameter Estimation ANNA 

 

2.2.1. Linear Transfer Function 

This function takes the input to the neuron (in this case 
output from the tanh-sigmoid hidden layer), and turns it into a 
continuous number. Linear activation function calculates the 
neuron’s output by simply returning the value passed to it. 
Mathematically, the linear activation function is represented as; 

a = purelin(n) = purelin(Wp+ b) = Wp+ b  (5) 

Where W is the weight vector, p is input value and b is the bias 
term. Figure 5 below illustrates the linear transfer function; 

Figure 5: Graphical representation of the linear transfer function 

2.2.2. Error Function  

The cost (error) function is the function used to minimize 
the error between the output (result by the network) and the 
target (reservoir response). Because parameter estimation is a 
multiple regression analysis problem that output continuous 
values Mean Squared Error cost function was used to train the 
network. The Mean Squared Error cost function is given 
below; 

  (6) 

Where P is the model output of the training example i, y = 
reservoir response of the training example i. 

Fortunately, the mean squared error performance index for 
the linear network is a quadratic function. Thus, the 
performance index will either have one global minimum, a 
week minimum or no minimum, depending on the 
characteristics of the input vectors. Specifically, the 
characteristics of the input vectors determine whether or not a 
unique solution exists. 

2.2.3. Model Parameter Estimation Training Procedure 
The procedures with which the network was trained can be 

summarized in the following steps; 

i. Import or read the training data (time and pressure 

data of the well test) from excel data sheet to 

MATLAB as variables. 

ii. Preprocess the input data to prevent outliers 

iii. Indicate the number of input and output neurons 

(number of unknown reservoir parameters) in this 

case hundred (20 and 5 respectively). 

iv. Divide the input data randomly into three parts for 
training, validating and testing of the algorithm (in 

this case the division was made in the ratio of 

7:1.5:1.5) to prevent overfitting. 

v. Indicate the transfer functions for the input and 

output neurons (in this case the tanh-sigmoid and 

linear function respectively). 

vi. Select the cost or error (in this case the Mean Squared 

Error) function to be minimized. 

vii. Choose the training algorithm, in this case, the 

Levenberg-Marquardt backpropagation. 

viii. Train the network to meet the goal (until the cost 

function is minimized and the variables converge). 
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ix. These steps i to viii are repeated for each reservoir 

type. 

 

2.3. Automation Process 

 
The model recognition and the parameter estimation 

algorithm would be integrated to form an automated system. 
The model recognition model first diagnoses and recognize the 
appropriate reservoir model and pass the output choice to the 
parameter estimation algorithm which in turn calculates the 
permeability, skin factor, reservoir radius, flowing wellbore 
pressure and/or the length of the conductivity fracture.  

III. RESULT 

3.1.  Reservoir Model Recognition Results 

After the Reservoir Model Recognition training period, the 
following results were derived. 

Figure 6: Plot of change of model recognition cost function to epoch 
(iteration) change  

Figure 7: Reservoir model recognition error histogram 

Figure 8: Reservoir model recognition confusion matrix 

The model recognition algorithm took five minutes, thirty-
six seconds to complete its training process. Figure 6 illustrates 
the performance (error function) of the algorithm and it 
indicates that after 152 epochs (iterations) the best performance 
was found to be 0.009323. This point of best performances can 
be referred to as the point of global minimum or convergence 
point. Also, figure 7 describes the error histogram that shows 
the difference between the target and the output and its 
observed that the maximum instance lies at 0.00468. Also, 
figure 8 illustrates the confusion matrix of the algorithm. From 
the training confusion matrix, 25.7% (721) of the training data 
belongs to class 1 and the algorithm classified them correctly 
as class 1while 0.1% (2) was misclassified as class 3. On the 
other hand, 26.5% (694) of the training data belongs to class 2 
and the algorithm classified them correctly as class 2 while the 
remaining 0.2% (5) was misclassified as class 3 also.  
Furthermore, 24.6% (690) of the training data belonging to 
class 3 was classified correctly as class 3 without any 
misclassification. In addition, 24.6% (689) of the training data 
that belongs to class 4 was classified correctly as class 4 while 
0.1% (2) was misclassified as class 3. This gave the algorithm 
a training accuracy of 99.7%. In other to make sure the 
algorithm generalizes and not over-fitted, the validation and 
testing are done. Testing is simply giving the algorithm data it 
has not seen before for it to classify. After the process of 
validation and testing, the validation accuracy was 99.3% and 
the test accuracy 99.1%. This gave the algorithm a total of 
99.5% classification (Reservoir model recognition) accuracy. 

3.2. Reservoir Model Parameter Estimation Training 
Results 

 

Figure 9: Mean square error change as number of iteration changes 
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Figure 10: Reservoir model parameter estimation error histogram 

 

Figure 11: Regression plot 

 
The model parameter estimation algorithm was trained 

separately for the four different reservoir models that were 

covered in this work. The figures 9 to 11 above illustrates the 
results for class 1 only. After the training process, error and 
index of fitness for the different reservoirs are shown in table1 
below; 

 

 

        Table 1: Mean square error and index of fitness of the various reservoir algorithms 

RESERVOIR 

TYPE 

TIME TO 

TRAIN 

(hr:min:sec) 

TRAINING VALIDATION TESTING 

 MSE 

(  

R  MSE 

(  

R MSE 

(  

R 

Infinite acting 

radial flow 7:12:26 0.0262653 1 0.0281048 1 0.0285931 1 

Finite 
conductivity 

fracture 
4:34:48 3.29122 1 3.41237 1 3.34943 1 

infinite 

conductivity 
fracture 

5:06:18 1058.05 1 1084.88 1 920.076 1 

Double porosity 

reservoir 3:16:12 219.763 1 207.247 1 198.014 1 

 

Table 1 above shows that the error from the training, 
validation, and testing of the algorithms are minimal. Also, the 
index of fitness of 1 was recorded for all the reservoir types 
which indicate a perfect fit. Therefore, it is proper to infer that 
the algorithms have learnt to predict permeability, skin factor, 
reservoir extent, flowing bottom hole pressure and also the 
length of fracture of finite and infinite conductivity accurately. 
An analysis was made on a dataset from Horne (1990) example 
6.1 shown in Figure 12 below. 

 

                 Figure 12: Well test data plot 
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This well-test dataset was passed into the algorithm and the 
result derived from this algorithm was compared with that of 
the conventional methods as solved by Horne (1990) and there 
was no significant error. Firstly, the algorithm detected the 
model to be a double porosity reservoir with a 100% certainty 
which is the same as Horne (1990) diagnosis. The estimated 
reservoir parameters are shown in table 2 below, it can be 
observed that the algorithm correctly identified the reservoir 
model and also predicted the reservoir parameters with a high 
degree of certainty and accuracy. 

                 Table 2: Comparing study results with Horne (1990) 

PARAMETER STUDY HORNE 

(1990) 

ERROR 

Permeability 

(md) 

498.6949 498.7 -0.0051 

Skin factor -2.0082 -2.007 -0.0012 

Radius of 

investigation 

(ft) 

41280 41280 0.00 

Flowing bottom 

hole pressure 

(psi) 

918.4964 918.5 -0.0036 

 

IV. CONCLUSION 

The objectives of a well test data analysis and interpretation 
as stated in section one above is to identify the conceptual 
reservoir model and estimate the identified reservoir model 
parameters. The algorithm proposed and developed in this 
paper was able to achieve the two objectives, although, 
constrained to only four reservoir types with a very high degree 
of certainty and accuracy. Therefore, it can be concluded that 
the artificial neural network algorithm is a good tool for well 
test analysis and interpretation and it saves both the time and 
energy of the interpreter when compared to conventional 
methods thereby providing enough time for proper engineering 
judgment. 

Finally, in light of this, the following under listed are 
recommended for future consideration; 

 In other to increase the capacity and accuracy of the 
algorithm, the algorithm should be retrained with 
more analyzed well-test data. 

 Data should be made available for the other plethora 
of reservoir types in other to have a fully automated 
well test analysis and interpretation system. 

 Verification and validation of the algorithm should be 
done with real-time data. 

 Artificial intelligence should be welcomed and 
applied in the petroleum industry and also taught as a 
course in the petroleum engineering undergraduate 
program to harness its complete benefits. 
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