

DEVELOPMENT AND IMPLEMENTATION OF PROGRAM OUTCOME ASSESSMENT TOOL FOR POLYTECHNIC COURSES

S. S. Swami, D. S. Karanjkar, S. G. Hingmire, S. G. Karad Department of Instrumentation Engineering, Institute of Petrochemical Engineering, Dr. Babasaheb Ambedkar Technological University, Lonere- 402103, Tal.Mangaon, Dist: Raigad, M. S., India

Abstract— In the present scenario every polytechnic is mandatory to apply for NBA (National Board of Acreditation), so every course teacher has to find out concerned level of PO (Program Outcome) attainment for the concerned theory as well as practical courses. This paper proposes a simplified tool for determining PO attainment level using performance in direct methods viz. test examination, semester examination and practical examination and in indirect method rubrics undertaken for various activities as per CO (Course Outcome), PO mapping matrix which has been designed by concerned faculty. In order to find out the PO attainment, outcomes of a particular course are mapped with PO (PO_1 to PO_7). This mapping is a co-relation between CO's and PO's of each course over the scale of 1 to 3. The percentage attainment levels are defined over the scale of 1 to 3 to compute the values of Direct Assessment of each course by using CO-PO Matrix. In order to justify the proposed tool a typical case-study has been presented. The Attainment levels obtained with Average Scores of Indirect Assessment with Rubrics was higher for the course- Feedback Control system as compared to that of Indirect Assessment without Rubrics for each PO's from PO₁ to PO₇.

Keywords— **Program Outcome, Course Outcome, CO-PO Matrix, CO-PO Attainment levels, rubrics assessment.**

I. INTRODUCTION

Education is a form of learning in which the knowledge, skills and information are transferred from teachers to students. The transition from *output based education* to *outcome based education* is the real need and demand of the 21st century learning system. Outcome Based Education (OBE) system has the ability to measure what the students are capable of. OBE is a student centered learning approach that focuses on empirical measurement of student performance (Rao and Nayak, 2015). In order to perform empirical measurement, learning objectives and outcomes are defined wherein objectives outline the expected results of teaching activities and outcome indicates the actual results that

can be demonstrated and measured at the end of learning period (Md.Kamal and Latip, 2009).

NBA is a permanent signatory member of the Washington Accord (Abhijit kumar *et al.*, 2019) that measures the competence of Indian technical institutions and ensures compliance with international standards. NBA has adopted OBE and provides accreditation to technical institutions. National Board of Accreditation (NBA), India, expects that the assessment of student's specific knowledge and skill should be based on the assessment and evaluation of the course outcomes (COs) and program outcomes(POs).

Memon *et al.*, 2009 reported that the accreditation process is to realize the value-addition in transforming students admitted to the program into capable technocrats, having sound domain knowledge and a satisfactory level of professional skills and attributes for ready employment in technical world. Assessment is very important in OBE. The overall achievement of OBE requires assessment of Programme Education Objectives (PEOs), Programme Outcomes (POs) and Course Outcomes (COs). The CO assessment forms the first step in calculating the assessment of POs and PEOs. Different tools such as examinations (verbal/written), assignments, mini projects, quiz etc. are used for the assessment of COs. Ideally question wise mapping of CO must be done and assessment must be done at that level.

The course outcomes are narrower statements that describe what students are expected to know and be able to do at the end of each course i.e. subject (Polimetla *et al.*, 2014). Expected course outcome statements refer to specific knowledge, practical skills, areas of professional development, attitude, higher-order thinking skills, etc. that faculty members expect students to develop, learn, or master during a course. The course outcomes are mapped to Programme Outcomes which are subsequently mapped to Programme Education Objectives (Suskie, 2004).

Program outcomes (POs) are statements that the graduate of a formal engineering program should have the knowledge, skills and attitudes (attributes). POs are defined by Accreditation Agencies of the country (NBA in India). Program outcomes represent the big picture, describe broad

aspects of behavior, and encompass multiple learning experiences.

Present assessment of engineering education is mainly based on student's academic performance in the final examination, however, in light of OBE overall development of student is required to be assessed. Apart from including more assessment tools such as assignments, mini projects etc. framing of the assignments, examinations should be such that it will be able to assess the defined course outcomes. Further course outcomes should be assessed by direct and indirect assessment methods. In the direct assessment method the average academic performance of all students in the course is considered while in indirect assessment method surveys are taken and rubrics are designed to assess the course outcomes (Reddy and Andrade, 2010). A commonly used definition for rubric is a document that articulates the expectations for an assignment by listing the criteria or what counts, and describing levels of quality from excellent to poor (Andrade 2000; Stiggins 2001; Arter and Chappuis 2007). Rubrics help to make implicit assumptions and expectations more explicit. Rubrics offer a clear insight into the elements, assess, find reason and motivate students towards developing the competencies. Rubrics have been shown to provide high-level feedback (Nordrum et al. 2013). Catherine Hack (2013) found that the rubrics very helpful in clarifying performance and promoting self-assessment, whilst the tutors felt that it was a time efficient and informative method of providing feedback. William et al (2012) assessed the graduate attributes of problem analysis, design, individual and team work, communication skills, and economics and project management using rubrics.

Present paper deals with development of a tool for Implementation of Program Outcome Assessment Tool for Polytechnic Courses which will assist course teacher to determine PO attainment levels. In following sections proposed evaluation criteria, guidelines for Rubrics assessment and a typical case study for demonstration of the proposed tool have been presented followed by Conclusions in the last section.

II. PROPOSED EVALUATION CRITERIA

The criteria for rubric evaluation system has divided in to seven Program-wise PO's i.e. PO_1 , PO_2 , PO_3 , PO_4 , PO_5 , PO_6 and PO_7 . The parameter wise PO's were organised in PO_1 - PO_7 and the students performances were evaluated based on the three point scale i.e. 1 indicates Slight (Low), 2 indicates Moderate (Medium) and 3 indicates Substantial (High). Concerned course teacher shall undertake – plan and monitor various activities / rubrics and evaluate as per following criteria:

PO₁: Basic and Discipline specific knowledge: Apply knowledge of basic mathematics, science and engineering fundamentals and engineering specialization to solve the engineering problems.

 PO_1 indicates the evaluation related to Basic and discipline specific knowledge, in this the students were assessed based on their ability to apply the knowledge of basic mathematics, science and engineering fundamentals and engineering specialization to solve the engineering problems based on the 3 point evaluation rating. Table 1 shows the evaluation about the students assessment based on basic and discipline specific knowledge.

PO₂: Problem analysis: Identify and analyses welldefined engineering problems using codified standard methods.

 PO_2 indicates the evaluation related to problem analysis, in this the students were assessed based on their ability to identify and analyse the well defined engineering problems using codified standard methods based on the 3 points evaluation rating. Table 2 shows the evaluation criteria about the student assessment based on problem analysis.

Table-1 Student assessment based on basic and discipline	
specific knowledge (PO ₁)	

Parameter	Evaluation Rating based on 1, 2, and 3					
		scores				
	1: Slight	2: Moderate	3:			
	(Low)	(Medium)	Substantial			
			(High)			
Apply	Understand	Understand	Understand,			
Mathematics,	the strategy	and apply the	apply,			
Basic	related to	things learnt	interpret and			
Science and	basic	in basic	solve the			
general	sciences	sciences and	problems			
Engineering	and	engineering	related to			
	engineering.	with few	basic science			
		errors.	and			
			engineering			
			perfectly.			

Table-2 Student assessment based on Problem analysis (PO₂)

(\mathbf{FO}_2)							
Parameter	Parameter Evaluation Rating based on 1, 2, and 3						
		scores					
	1: Slight	2: Moderate	3:				
	(Low)	(Medium)	Substantial				
			(High)				
Strategy to	Fair in	Good in	Excellent				
Identify	formulating	formulating	in				
and	Strategy to	Strategy to	formulating				
analyze	Identify	Identify	Strategy to				
engineering	and	and analyse	Identify				
problems	analyze	engineering	and analyse				
-	engineering	problems	engineering				
	problems		problems				

PO₃: Design/development of solutions: Design solutions for well-defined technical problems and assist with the design of systems components or processes to meet specified needs.

PO₃ indicates evaluation to the related Design/development of solutions, in this the students were assessed based on their ability to Design solutions for welldefined technical problems and assist with the design of systems components or processes to meet specified needs based on the 3 point evaluation rating. Table 3 shows the evaluation criteria about the students assessment based on Design/development of solutions.

Table 3: Student assessment based on Design/development of solutions (PO₃)

Parameter Evaluation Rating based on 1, 2, and 3 scores							
	1: Slight	2: Moderate	3: Substantial				
	(Low)	(Medium)	(High)				
Design	Understand	Understand	Understand,				
solutions	the	and Apply the	Apply and				
for	technical	solution for	design the				
technical	problems	the problem	solution for the				
problems		with few	technical				
	errors		problem				
			without any				
			errors				

PO₄: Engineering Tools, Experimentation and Testing: Apply modern engineering tools and appropriate technique to conduct standard tests and measurements.

PO₄ indicates the evaluation related to Engineering Tools, Experimentation and Testing, in this the students based on their ability to Apply modern engineering tools and appropriate technique to conduct standard tests and measurements based on the 3 point evaluation rating. Table 4 shows the evaluation criteria about the students assessment based on Engineering Tools, Experimentation and Testing.

Table 4: Student assessment based on Engineering Tools, **Experimentation and Testing (PO₄)**

Parameter	Evaluation Rating based on 1, 2, and 3 scores					
	1: Slight (Low)	2: Moderate (Medium)	3: Substantial (High)			
Apply	Fair in	Good in	Excellent in			
modern	applying	applying	applying			
engineering	modern	modern	modern			
tools and	engineering	engineering	engineering			
Work	tools and	tools and	tools and			
Measurement	Work	Work	Work			
Techniques	Measurement	Measurement	Measurement			
	Techniques	Techniques	Techniques			

PO₅: Engineering practices for society, sustainability and environment: Apply appropriate technology in context of society, sustainability, environment and ethical practices.

PO₅ indicates the evaluation related to Engineering practices for society, sustainability and environment, in this the students based on their ability to Apply appropriate technology in context of society, sustainability, environment

and ethical practices based on the 3 point evaluation rating. Table 5 shows the evaluation criteria about the students assessment based on Engineering practices for society, sustainability and environment.

PO6: Project Management: Use engineering management principles individually, as a team member or a leader to manage projects and effectively communicate about welldefined engineering activities.

PO₆ indicates the evaluation related to Project Management, in this the students based on their ability to Use engineering management principles individually, as a team member or a leader to manage projects and effectively communicate about well-defined engineering activities based on the 3 point evaluation rating. Table 6 shows the evaluation criteria about the students assessment based on Project Management.

Table 5:	Stu	dent	ass	essr	nent b	ased	on E	ngir	neerir	ıg
practices for	soc	iety,	sus	tain	ability	and	envi	roni	nent	(PO5)
_				_		_				

Parameter	Evaluation Rating based on 1, 2, and 3 scores					
	1: Slight	2: Moderate	3: Substantial			
	(Low)	(Medium)	(High)			
Services	Aware of	Aware of	Aware of			
to	society,	society,	society,			
Profession	sustainability	sustainability	sustainability			
and	and	and	and			
Society	environment	environment	environment			
	related	related issues	related issues			
	issues and	and actively	and actively			
	willing to	working , not	working and			
	work , not	self motivated	self motivated			
	self		and			
	motivated		encourages			
			others also.			

Table 6: Student assessment based on Project Management (PO₆)

Parameter	Evaluation Rating based on 1, 2, and 3 scores						
	1: Slight (Low)	2: Moderate (Medium)	3: Substantial (High)				
Leadership and team work	Less competent to work as leader, Fair in doing team work activities	More competent to work as leader, good in doing team work activities	Most competent to work as leader, excellent in doing team work activities				

PO7: Life-long learning: Ability to analyses individual needs and engage in updating in the context of technological changes.

International Journal of Engineering Applied Sciences and Technology, 2020 Vol. 4. Issue 12. ISSN No. 2455-2143. Pages 430-436

Published Online April 2020 in IJEAST (http://www.ijeast.com)

PO7 indicates the evaluation related to Life-long learning, in this the students based on their ability to analyses individual needs and engage in updating in the context of technological changes based on the 3 point evaluation rating. Table 7 shows the evaluation criteria about the students assessment based on Life-long learning.

Table 7: Student assessment based on Life-long learning (\mathbf{PO}_7)

(\mathbf{IO})							
Parameter	Evaluation Rating based on 1, 2, and 3 scores						
	1: Slight	2: Moderate	3: Substantial				
	(Low)	(Medium)	(High)				
Engage,	Fair in	Good in	Excellent in				
analyze,	Analyzing	Analyzing and	Analyzing and				
adapt	and	updating with	updating with				
and	updating	technical	technical				
update	with	changes, self	changes, self-				
with	technical	motivated	motivated and				
technical	changes,		motivates others				
changes	not self		also				
	motivated						

III. RUBRICS ASSESSMENT

The Rubrics undertaken for individual course (Feedback Control System (Theory and Practical)by concerned course teacher includes various activities viz. Course related seminar/ task, Surveys, Activity for remembering the topic. Online test, Wall chart preparation. Project, Model / prototype preparation, Content beyond curriculum reading and Component /machine identification and learning specifications which requires planning, monitoring, evaluation and relevance with PO's (i.e.PO₁, PO₂, PO₃, PO₄, PO₅, PO₆ and PO₇) and its average score. Table 8 shows the rubrics undertaken for individual course.

Table-8	Rubrics undertaken for individual course by
	concerned course teachers

			i coui se te		
Sr.	Rubric/	Plannin	Monitor	Evaluatio	Relevan
No	Activity	g	ing	n	ce with
	-	_	_	(Average	POs *
				score)	and its
				,	average
					score
					score
1	Course	Suggesti	Timelin	At	PO_1
	related	ng	ess of	delivery	- PO ₇
	seminar/	suitable	search	of	(Any)
	task	topic /	and	seminar/t	× 5/
		asking	preparati	ask	
		to search	on of		
			seminar/		
			task		
2	Surveys	Suggesti	Timelin	At	
		ng	ess of	submissio	
		suitable	search	n of	
		topic,	and	survey	
		field for	survey	report	
		survey			

	1			r	r
3	Activity	Identifyi	Participa	With	
	for	ng the	tion	effectiven	
	remembe	topics		ess of	
	ring the	requirin		activity	
	topic	g			
		activity			
4	Online	Identifyi	Participa	Results	
	test	ng the	tion in	obtained	
		test	test		
		availabl			
		e			
5	Project	Suggesti	executio	Outcome	
		ng for	n of task		
		project			
6	Wall	Advisin	executio	Outcome	
	chart	g for	n of task		
	preparati	wall			
	on	chart			
		topics			
7	Model /	Advisin	executio	Outcome	
	prototype	g for	n of task		
	preparati	model /			
	on	prototyp			
		e topics			
8	Content	Suggesti	Timelin	At	
	beyond	ng	ess of	submissio	
	curriculu	suitable	search	n of topic	
	m	topic,	and	reading	
	reading	field for	activity	report	
		reading			
9	Compon	Suggesti	Timelin	At	
	ent	ng	ess of	submissio	
	/machine	suitable	search	n of	
	identifica	compon	and	compone	
	tion and	ent	activity	nt	
	learning	/machin		/machine	
	specificat	e for		related	
	ions	learning		report	

^{*} POs i.e average score of PO₁ - PO₇ was evaluated based on the three point scale 1, 2 and 3 for each individual Rubric.

IV. ILLUSTRATION OF PROPOSED TOOL USING A CASE STUDY

In order to justify the proposed tool with a typical case study has been evaluated. Table 9 and Table 10 presents the mapping of course outcomes with program outcomes on the basis of their relevance based on three-point rating i.e. 1, 2 or 3 for the course: Feedback Control System (Theory &Practical) of fifth semester Diploma Program in Instrumentation Engineering. The average of all the mapped Course Outcomes (CO's) and Program Outcomes (PO's) has been taken and their levels have been decided by rounding up the rating to the nearest higher number.

A. Assessment and determination of the attainment levels

Table-9 Mapping of Course Outcomes with Program Outcomes for the course Feedback Control System (Theory)

(Theory)										
Course	Program Outcomes									
Outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇			
Know	2	1	1	-		-	-			
various										
methods of										
computation.										
Understand	-	1	2	3	3	1	2			
feedback										
control										
system and										
its analysis.										
Understand	3	2	-	-	-	-	-			
concept of										
mathematical										
modeling.										
Understand										
transient										
response and	_	1	1	2	_	_	1			
steady state	_	1	1	2	_	_	1			
analysis of										
system.										
Understand										
and draw root	_	_	1	_	1	1	1			
locus of			1		1	1	1			
system.										
Understand										
frequency	_	-	2	1	1	-	_			
response			-	1	1					
analysis.										
Average	2.5	1.2	1.4	1.7	1.6	1	1.3			
Level	3	2	2	2	2	1	2			

Table-10 Mapping of Course Outcomes with Program Outcomes for the course Feedback Control System (Lab practice) DIN 3106

Course	Program Outcomes								
Outcomes	PO ₁	PO ₂	PO ₃	PO ₄	PO5	PO ₆	PO ₇		
Identify, understand and perform various experiments of feedback control system to analyze matmathematical aspects	3	2	1	2	3	1			
Understand working of pneumatic and electro- mechanical system.	-	2	2	3	3	-	2		
Average	3	2	1.5	2.5	3	0.5	2		
Level	3	2	2	3	3	0.5			

Students have to appear for mid-semester (30 marks) and endsemester (70 marks) examinations as per Dr. Babasaheb Ambedkar Technological University, Lonere (M. S.), India, norms. A centralized process was used for conduction of midsemester and end- semester examination. The examinations were conducted as per the academic calendar of the University. Table 11 shows the details of Academic year, Semester, Total number of students, average marks of students, set target, students above set target, percentage of students above set target for the course Feedback Control System (Theory), course code (DIN 3101). The attainment level is presented in Table 11 as follows: as per set procedure the Attainment level 1 i.e. 40% of students scoring more than 40% marks; Attainment level 2 i.e. 45% of students scoring more than 40% marks; Attainment level 3 i.e. 50% of students scoring more than 40% marks.

Table-11 Targets for Attainment for course Feedback Control System(Theory)

control System(Theory)							
Academic Year	2019-20						
Semester	Fifth						
Course	Feedback Control System						
	(Theory)						
Course code	DIN 3101						
Total Number of	53						
Students							
Avg marks	68.52						
Set Target	40						
Students above Set	51						
Target							
% of Students above Set	96%						
Target							
Attainment Levels	40%, 45%, 50%						
Attainment Level	3						

As presented in the earlier section the students have to appear for the Practical examination (is of 50 marks) as per Dr. Babasaheb Ambedkar Technological University norms. Pratical examinations were conducted in the dates in adherence to the academic calendar. Table 12 shows the details of Academic year, Semester, Total number of students, Average marks of students, target, students above target, percentage of students above target for the course Feedback control system (Lab Practice) and course code(DIN 3106).The attainment level is taken in Table 12 as follows: Attainment level 1 i.e. 50% of students scoring more than 60% marks; Attainment level 2 i.e. 55% of students scoring more than 60% marks; Attainment level 3i.e. 60% of students scoring more than 60% marks.

Generally, the indirect assessment is based on Alumni feedback, parents feedback and present student feedback. As

per the improved method of analysis using the Rubrics which also incorporates the many activities i.e. like assignment, quiz and surprise test may add-on the PO attainment level which results into the better attainment. The indirect assessment by adding rubrics (by conducting various activities) and averaging it, which showed increase in PO attainment level. Table 13 shows PO attainment levels for the course Feedback Control System (Theory) and Feedback Control System (Lab Practice) after taking addition of 80% (average of two courses) marks of direct assessment and 20% marks of indirect assessment. It also indicated that the indirect assessment using rubrics by conducting various activities viz. assignments, quiz and surprise test, is 1.9, and considering 20% of this indirect assessment, then it will be 0.39.

 Table 12: Targets for Attainment for course Feedback

 Control System (Lab Practice)

Academic Year	2019-20
Semester	Fifth
	Feedback Control
Course	System(Lab Practice)
Course code	DIN 3106
Total Number of Students	53
Avg Marks	43.28%
Target	30
Students Above target	43
% of Students Above target	81%
Attainment Levels	50%, 55%, 60%
Attainment Level achieved	3

Figure 1 shows the average PO attainment level for courses Feedback Control System (Theory) and Feedback Control System (Lab Practice) with respect to Target (3.0). It shows the attainments of PO₁, PO₂, PO₃, PO₄, PO₅, PO₆ and PO₇to be 2.88, 2.1, 2.08, 2.58, 2.56, 1.1 and 2.18 respectively with respect to the target of 3.

Figure 2 shows the comparison of Average Scores of Indirect Assessment with Rubrics and Indirect Assessment without Rubrics for various POs. It can be seen from the graph that the scores obtained with Average Scores of Indirect Assessment with Rubrics was higher as compared to that of Indirect Assessment without Rubrics for each PO's from PO₁ to PO₇. Therefore the Indirect Assessment with Rubrics results into the better attainment level for all the PO's.

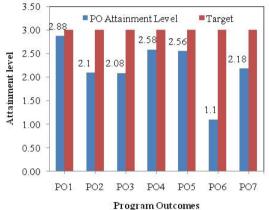


Fig1. Average PO Attainment Level with respect to Target

11 1 0

16	Table-13 PO attainment levels for the courses Feedback Control System(Theory) and Feedback Control									
System (Lab Practice)										
Sir. No.						PO's				
	COURSE NAME	Course								

	COURSE NAME								
	Course Code	PO ₁	PO ₂	PO ₃	PO ₄	PO ₅	PO ₆	PO ₇	
1.	Feedback control System	DIN3101	3	2	2	2	2	1	2
2.	Feedback control System	DIN3101	3	2	2	3	3	0.5	2
Direct Attainment		3	2	2	2.5	2.5	0.75	2	
	(A) 80% (Direct Attainment)		2.4	1.6	1.6	2	2	0.6	1.6
Indirect Attainment (Alumni feedback, Parents feedback, Current students feedback)		1.6	1.7	1.6	2.1	2.0	1.9	2.1	
Rubrics (assignment, quiz and surprise test)]		0.8	0.8	0.8	0.8	0.8	0.8	0.8	
Indirect Attainment [Alumni feedback, Parents feedback, Current students feedback and Rubrics (assignment, quiz and surprise test)]		2.4	2.5	2.4	2.9	2.8	2.7	2.9	
(B) 20%(Indirect Attainment using rubrics)		0.48	0.5	0.48	0.58	0.56	0.54	0.58	
PO Attainment Level=(A)+(B)		2.88	2.1	2.08	2.58	2.56	1.1	2.18	
Target Level		3	3	3	3	3	3	3	

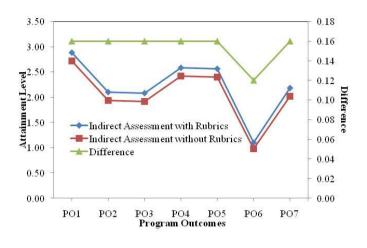


Fig. 2. Comparison of Average Scores of Indirect Assessment with Rubrics and Indirect Assessment with out Rubrics for various POs.

V. CONCLUSIONS

Paper proposes a tool for assessment of PO attainment levels, taking account of direct and indirect assessments, which will assist polytechnic faculty members. Case-study has been presented for easy illustration of the tool which reveals that the attainment levels obtained with Average Scores of Indirect Assessment with Rubrics was higher for the course Feedback Control system as compared to that of Indirect Assessment without Rubrics for each PO's from PO₁ to PO₇.

VI. REFERENCE

- [1] Abhijitkumar A. Jadhav, Sandeep S. Ahankari, and Deepali A. Suryawanshi. (2018). A Continuous Sustainable Progress for Realistic Attainment of Program Outcomes (POs): A Case Study (Conference Paper -September 2018).https://www.researchgate.net/publication/32753519 4 Dt.ofAccess:15-03-2020
- [2] Andrade, H. 2000. Using rubrics to promote thinking and learning. Educational Leadership 57, (5): 13–18.
- [3] Arter, J., and J. Chappuis. (2007). Creating and recognizing quality rubrics. Upper Saddle River, NJ: Pearson/Merrill Prentice Hall.
- [4] Catherine Hack (2013), Using rubrics to improve marking reliability and to clarify good performance, The Higher Education Academy.

- [5] Md. Kamal M., Latip, H. H., (2009). Examinable Course Assessment Tool Based on Outcome Based Education". In proceedings of 2009 International Conference on Engineering Education. IEEE, 2009.
- [6] Memon, J. A., Demirdogen, R. E., Chowdhry, B. S., (2009). Achievements, outcomes and proposal for global accreditation of engineering education in developing countries, *Procedia Social and Behavioral Sciences*, 1, 2557–2561.
- [7] Nordrum, L., Evans, K. and Gustafsson, M. (2013), Comparing student learning experiences of in-text commentary and rubric-articulated feedback: strategies for formative assessment, Assessment & Evaluation in Higher Education DOI: 10.1080/02602938.2012.758229
- [8] Polimetla, P., Sailu, C., Kancharla, R., (2014). Assessment of engineering programs — Indian context in global outcome based education paradigm,"*MOOC, Innovation* and Technology in Education (MITE), 2014 IEEE International Conference on , vol., no., pp.22, 26, 19-20 Dec. 2014.
- [9] Rao, S. S. and Nayak, A., (2015).Collaboration Process for Authentic Assessment in Technical Education. 2015 IEEE 3rd International Conference on MOOCs, Innovation and Technology in Education (MITE), 267-272.
- [10] Reddy, Y.M. and Andrade, H. (2010). A review of rubric use in higher education, *Assessment and Evaluation in Higher Education*, *35*, 435-448.
- [11]Stiggins, R.J.(2001). Student-involved classroom assessment. 3rd ed. Upper Saddle River, NJ: Prentice-Hall.
- [12]Suskie, L., (2004). Assessing student learning: A common sense guide, Bolton, MA: Anker Publishing.
- [13]William B., Oscar N., and Wayne P., (2012). Rubrics for Accreditation and Outcomes Assessment in Engineering Capstone Projects, Proc. 2012 Canadian Engineering Education Association (CEEA12) Conf.