
                  International Journal of Engineering Applied Sciences and Technology, 2020    
                                         Vol. 5, Issue 4, ISSN No. 2455-2143, Pages 390-398 
                                Published Online August 2020 in IJEAST (http://www.ijeast.com)                                                                                                                                                                                                                                                                                                                                                                                                                    
 

390 

 

 STRENGTH AND STABILITY OF GOLD 

USING TWO BODY POTENTIALS  
 

Vikram Singh 

Physics Department, Agra College, Agra 

 
 
Abstract :  Numerical computations of strength 

and stability of Au in (100) loading mode of 

deformation are carried out by taking K. D. 

potential, Morse potential and L - J Potential. At 

failure points, second order elastic constants are 

also calculated. Computed results of K. D. 

potential are 6.99GPa at 7.76% of strain in 

tension and - 5.18GPa at -5.23% of strain in 

compression. These results are fairly close with 

experimental results and computed results of 

other investigators.  
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I. INTRODUCTION 

 
In principle, there is an upper limit to the mechanical 

strength of material under the given test conditions. 

This limit is termed as “ideal strength” or “theoretical 

strength” of the material. The ideal strength was 

originally defined as stress or strain at which perfect 

crystal lattice became mechanically unstable with 

respect to arbitrary homogeneous infinitesimal 

deformation.  Many workers [1-32] have been 

calculated strength of cubic metals in various modes 

of deformations using different types of interaction 

between atoms. Using simulation technique, Cerney 
and coworkers [6-12] studied mechanical stability of 

cubic metals (Ni, Ir, Fe, Cr) in hydrostatic loading 

and uniaxial loading. Ho et al [13] investigated the 

effect of transverse loading on ideal tensile strength 

of six FCC materials using molecular statics and 

density function theory. Review article on this topic 

is given by Ogata et al [14]. Zou et al [15] showed 

that a nano crystalline alloy retains an extra ordinary 

high yield strength over 5 GPa up to 6000C. Recently 

Ho et al [16] have investigated ideal strength of some 

FCC nano structures using MS simulation. Ideal 

strength of various MC (M = Ti, Zr, Hf) systems 
using first principal calculations recently calculated 

by Yang et al [17]. Using EAM, many investigators 

[18-25] have been estimated strengths of cubic 

metals. Singh and coworkers [24, 25] recently 

calculated ideal strength of Cu and Al in (100) 

loading mode of deformation using analytic EAM. 

Using simulation techniques, Milstein et al [26, 27] 

have been calculated strength of many cubic metals. 

Using rigorous estimation of binding energy, Singh 

[28-30] and Mitra et al [31] estimated strength and 

stability of Cu, Ag, Au and Al. These studies showed 
that in present time, the calculations of theoretical 

strength of cubic metals are an active field in 

research. 

 

For calculations of mechanical properties of cubic 

metals, many two body potentials (such as Lennard 

Jones potential, Morse potential, logarithmic 

potential and K. D. potential) are used in literature. 

Milstein [32, 33] and Mitra et al [34] calculated 

theoretical strength of Fe, Ni and Al using Morse 

potential. Singh [35-37] estimated strength and 
stability of Cu and Al using K. D. potential in 

different modes of deformation. These results are 

fairly close with experimental results. Using K. D. 

potential as an interaction between atoms, recently 

Singh et al [38-40] have calculated second order 

elastic constants, third order elastic constants and 

pressure derivatives of second order elastic constants 

of many FCC metals and found that the calculated 

results are very close with experimental results. As 

per our knowledge the calculation of strength of Gold 

using two body potentials are not present in literature. 
So this give me a motivation to calculate theoretical 

strength of Gold taking different types of two body 

potential as an interaction between atoms. In this 

study, the first section gives present status of work, 

second section gives computation details of two body 

potentials and (100) loading mode of deformation, 

third section gives results and discussion of work, 

fourth section gives conclusions of work and last fifth 

section gives the reference of the work. 

 

II. COMPUTATIONAL DETAIL 

 

2.1 TWO BODY POTENTIALS 

 

In this study we are using three two body potentials 

(K. D. potential, Morse potential and Lennard Jones 
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12-6 potential). Two body potential as suggested by 

Kuchhal and Dass [41] is given as 
 

(𝑟) =  −𝐴𝑟−𝑛 +  𝐵 𝑒𝑥𝑝(−𝑝𝑟𝑚)
 

 

Where m and n are two adjustable parameters and A, 

B and p are unknown potential parameters which are 

expressed in the unit of erg.cmn, erg and cm-m 

respectively. Singh et al [40] have calculated these 

parameters by taking experimental values of lattice 

parameter, bulk modulus and cohesive energy as an 

input data. These unknown potential parameters for 

Gold are shown in table 1.  
Morse potential function is given as 

 

ɸ(𝑟) = 𝐷(𝑒−2𝛼(𝑟−𝑟0) − 2𝑒−𝛼(𝑟−𝑟0)) 

 

D, α and r0 are three unknown potential parameters 

which are determined by many workers for different 
cubic metals using some physical quantities as an 

input data. As per our knowledge, Morse potential 

parameters for Gold are estimated by Flahive et al 

[42] and Milstein [43]. These parameters are shown 

in table 1. 

Lennard - Jones 12-6 (L - J) potential function is 

given as 

  

ɸ(𝑟) = 4ɛ [(
𝜎

𝑟
)

12

− (
𝜎

𝑟
)

6

] 

 

This potential contains only two unknown 

parameters. As per our knowledge, these parameters 

are calculated by Halicioglu et al [44] and Zhen et al 

[45] for Gold, which are shown in table 1. In all these 

equations r gives the distance from a lattice site 

chosen as the origin to a given lattice site with 

coordinate specified by the three integers l1.l2, l3 as  

 

𝑟 =  
1

2
(𝑎1

2𝑙1
2 + 𝑎2

2𝑙2
2 + 𝑎3

2𝑙3
2)

1
2 

Where l1, l2 and l3 are integers (chosen such that l1+ l2 

+l3 is even for an FCC lattice) and a1, a2, and a3 are 
cell lengths. (In equilibrium the lattice parameters a1 

= a2 = a3 = 4.0783(Å) for Gold [45])  

2.2 THEORY OF (100) LOADING  

 
Detailed theory has been given by Milstein [32, 33] 

for applying Born stability criteria to the 

determination of mechanical stability of cubic 

crystals in the presence of applied forces and 

deformations. For uniaxial stress in cubic crystals 

with central interactions, the necessary and sufficient 

conditions for a lattice to be in stable equilibrium are    
      

𝐵12 > 0 
 

𝐵23 > 0 
 

𝐵22 − 𝐵23 > 0 
 

𝐵11(𝐵22 + 𝐵23) − 2𝐵12
2 > 0 

 

 

For brevity of notation we represent 𝐵22 − 𝐵23 > 0 

by ab1 and 𝐵11(𝐵22 + 𝐵23) − 2𝐵12
2 > 0  by ab2. 

Stress i is being given by    

 

𝜎𝑖 =
1

𝑎𝑗𝑎𝑘

(
𝜕𝐸

𝜕𝑎𝑖

) =
𝑢𝑎𝑖

4𝑎𝑗𝑎𝑘

∑ ∑ ∑ 𝑙𝑖
2

𝜕ɸ

𝜕𝑟2

𝑙3𝑙2𝑙1

 

                            

  Where E is the energy per unit cell 

𝐸 =
𝑢

2
∑ ∑ ∑ ɸ(𝑟)

𝑙3𝑙2𝑙1

 

 Bij are given by 

 

𝐵𝑖𝑗 = (
𝜕2𝐸

𝜕𝑎𝑖𝜕𝑎𝑗

) =
𝑢𝑎𝑖𝑎𝑗

8
∑ ∑ ∑ 𝑙𝑖

2𝑙𝑗
2

𝜕2ɸ

(𝜕𝑟2)2

𝑙3𝑙2𝑙1

+
𝑢

4
𝛿𝑖𝑗 ∑ ∑ ∑ 𝑙𝑖

2
𝜕ɸ

𝜕𝑟2

𝑙3𝑙2𝑙1

 

 

 for i, j =1,2,3  

 

Where δij is the Kronecker delta function and u is the 

number of atoms per unit cell. The summations are 
carried out over a number of atoms sufficiently large 

to ensure that convergence up to four significant 

figures is achieved. In case of (100) loading, increase 

or decrease the lattice parameter a1 and the lattice 

parameters a2 = a3 are allowed to change 

symmetrically such that the deformed lattice 

maintains the tetragonal symmetry. This method 

developed by Milstein [32, 33] and calculated 

theoretical strength of Fe and Ni in this mode of 

deformation using Morse potential function as an 

interaction between atoms. 
 

 

 

 

 

 



                  International Journal of Engineering Applied Sciences and Technology, 2020    
                                         Vol. 5, Issue 4, ISSN No. 2455-2143, Pages 390-398 
                                Published Online August 2020 in IJEAST (http://www.ijeast.com)                                                                                                                                                                                                                                                                                                                                                                                                                    
 

392 

 

 

K. D. potential [40] 

m n p (cm-1) A (erg - cmn) B (erg) 

1 1/2 3.04 x109 1.1508 x10-18 6.9101 x1023 

2 1 2.728 x1016 4.8686 x10-22 1.6332 x10-4 

1 2 7.89 x108 7.4295 x10-29 7.463 x10-4 

Morse potential D(10-12 erg) α (Å-1) r0 (Å) 

Flahive et al [ 42] .773222 1.6166 3.004 

Milstein [43] 1.44487 .476645 5.9845 

Lennard Jones potential ɛ/K σ (Å) 

Halicioglu et al [44] 5123 2.637 

Zhen et al [45] 5152.9 2.6367 

                                         Table 1 Potential parameters of two body potentials for Gold. 

III. CALCULATIONS, RESULTS AND 

DISCUSSION 

 

Figures from 1 to 4 show the variations of Bij, ab1, 

ab2, lattice parameter a2, stress σ1 and energy per unit 

cell (E) with respect to lattice parameter a1 for K. D. 

potential (for m=1 and n=1/2). Similarly the 

variations of Bij, ab1, ab2, lattice parameter a2, stress 
σ1 and energy per unit cell (E) with lattice parameter 

a1 in case of Morse potential (Flahive et al [42]) and 

Lennard Jones potential (Halicioglu et al [44]) as an 

interaction between atoms are shown in figures from 

5 to 12. The variations of these quantities for other 

potentials (K. D. potential for other values of 

adjustable parameters, Morse potential which 

parameters are calculated by Milstein [43] and 

Lennard Jones potential which parameters are 

calculated by Zhen et al [45]) are not shown here 

since the nature of these plots are approximately 

similar. Thus in this study we are giving only 
computed results for these potentials.  
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Figure 1 Variation of Bij with lattice parameter a1.  
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Figure 2 Variation of ab1 and ab2 with lattice 

parameter a1.  
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Figure 3 Variation of lattice parameter a2 and stress 

σ1 with lattice parameter a1.  
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Figure 4 Variation of energy per unit cell (E) with 

lattice parameter a1.  
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Figure 5 Variation of Bij with lattice parameter a1 for 

Morse potential. 
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Figure 6 Variation of ab1 and ab2 with lattice 

parameter a1 for Morse potential. 
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Figure 7 Variation of lattice parameter a2 and stress 

σ1 with lattice parameter a1 for Morse potential. 
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Figure 8 Variation of energy per unit cell (E) with 

lattice parameter a1 for Morse potential 
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Figure 9 Variation of Bij with lattice parameter a1 for 

Lennard Jones potential. 
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Figure 10 Variation of ab1 and ab2 with lattice 

parameter a1 for Lennard Jones potential. 
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Figure 11 Variation of lattice parameter a2 and stress 

σ1 with lattice parameter a1 for Lennard Jones 

potential. 
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Figure 12 Variation of energy per unit cell (E) with 

lattice parameter a1 for Lennard Jones potential. 
 

In case of K. D. potential, in compression the 

stability condition ab2 is violated at a1 = 3.865(Å) 

and in tension stability condition ab1 is violated at a1 

= 4.395(Å). Breaking stresses at these points are 

6.99GPa in tension and -5.18GPa in compression. 

These values of stresses and strains (which is equal to 

(𝑎1
𝑐 − 𝑎1

0)/𝑎0 where 𝑎1
𝑐  is lattice constant (a1) at 

which Born stability criteria violated) give strength 
and stability of Gold. Thus tensile strength is 

6.99GPa at 7.76% of strain and compressive strength 

is -5.18GPa at 5.23% of strain.  In tension, stress 

reaches its maximum value 7.219GPa at a1 = 4.55(Å). 

During compression stress reaches maximum values -

1.75GPa at a1 = 3.1(Å) but the energy per unit cell is 

not reaches local maximum or minimum values. At 

these points the values of lattice constant a2, energy 

per unit cell and second order elastic constants C11 

and C12 are shown in table 2. Table 2 also gives 

theoretical strength of Gold at different values of 
adjustable parameters m and n in K. D. potential.    

 

For Morse potential [42], the stability condition ab2 

is violated at a1 = 3.7334(Å) in compression and 

stability condition ab1 is violated at a1 = 4.4279(Å) in 

tension and the breaking stresses at these points are 

11.98GPa in tension and -5.37GPa in compression. 

Thus theoretical strength of Au using Morse potential 

is 11.98GPa at 8.57% of strain in tension and -

5.137GPa at -8.46% of strain in compression.  In 

tension, stress reaches its maximum value 32.813GPa 

at a1 = 5.45(Å). At these points the values of lattice 
constant a2, stress and second order elastic constants 

C11 and C12 are shown in table 3. We also calculated 

strength of Gold using Morse potential whose 

parameters are calculated by Milstein [43]. Computed 

results of theoretical strength of Gold by taking this 

Morse potential are also summarized in table 3. The 

stability condition B23 is violated instead of ab2 

during compression in this Morse potential. During 

compression, we calculate Bij, ab1, ab2, stress and 

energy per unit cell up to a1 =2.5(Å) but in this 

potential the stress is not reaches its maximum value 
similarly the energy per unit cell also not reaches its 

maximum and minimum value which is found in 

Flahive [43] potential.    

  

Similarly, the stability condition ab2 is violated at a1 

=3.7014(Å) in compression and stability condition 

ab1 is violated at a1 = 4.495(Å) in tension for 

Lennard Jones potential. Breaking stresses at these 

points are 22.5 GPa in tension and -12.25 GPa in 

compression. Thus the theoretical strength of Gold 
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using Lennard Jones 12-6 potential is 22.5 GPa at 

10.22% of strain in tension and -12.25 GPa at -9.24% 
of strain in compression. Maximum value of stress is 

33.099GPa at a1 = 5.05 (Å) in tension. At these points 

the values of lattice constant a2, stress and second 

order elastic constants C11 and C12 are shown in table 

4. We also calculate theoretical strength of Gold by 

taking another L J potential which is developed by 

Zhen et al [45] and are given in table 4. The results of 

these two potential are approximately similar. 

 

Figures 4, 8 and 12 show that when lattice constant a1 

varies from equilibrium value, the other lattice 

constants a2 and a3 also varies in such manner the 
crystal remains in the state of uniaxial stress. 

Throughout this deformation, lattice parameter a2 

decreases as a1 increases but for larger values of a1, a2 

increases as a1 increases. The same results are found 

by Milstein [33] for Ni. In this study the stress in 

compression reaches it maximum value (negative in 

K. D. potential and positive in Morse and L - J 
potential) and then further decreases as decrease the 

lattice parameter a1.  Energy per unit cell has also 

local maxima and minima during compression in 

Morse and L - J types of interaction between atoms. 

These results show second unstable phase during 

compression and this is detailed explained by 

Milstein [33] for FCC metals. However, in K. D. 

potential local maxima and minima of energy per unit 

cell is absent during compression but the stress still 

reaches maximum value and this show second 

unstable phase during compression. 

 
 

 

 

 

 

 

Potentials  a1(Å)  a2(Å) σ1 

(GPa) 

Second order elastic 

constants (1012dyn/cm2) 

Cause  of failure  or maximum 

stress 

C11 C12 

K. D. 

 potential  

m = 1, 

n = 1/2 

4.395 4.0418 6.99 .116 .0322 Failure in tension ( ab1=0) 

4.0783 4.0783 0 2.5918 1.3034 At equilibrium [40] 

3.865 4.218 -5.18 4.236 2.561 Failure in compression ( ab2=0)  

4.55 4.0414 7.219 - - Maximum stress in tension 

2.95 4.8211 -1.75 - - Maximum stress in compression 

K. D. 

 potential  

m = 1, 

n = 2 

4.6129 3.9837 17.16 .756 .236 Failure in tension ( ab1=0) 

4.0783 4.0783 0 2.5205 1.3381 At equilibrium [40] 

3.6397 4.318 -43.18 2.694 2.131 Failure in compression ( ab2=0)  

5.1 3.978 20.647 - - Maximum stress in tension 

3.1 4.7333 -4.959 - - Maximum stress in compression 

K. D. 

 potential  

m = 2, 
n = 1 

4.539 4.0165 11.835 .265 .0722 Failure in tension ( ab1=0) 

4.0783 4.0783 0 2.5774 1.3104 At equilibrium [40] 

3.7837 4.261 -8.46 2.459 1.643 Failure in compression ( ab2=0)  

4.8 4.0159 12.549 - - Maximum stress in tension 

3.07 4.864 -3.898 - - Maximum stress in compression 

 

Table 2 Computed results at different values of adjustable parameters m and n in K. D. potential. 

 

Potentials  a1(Å)  a2(Å) σ1 
(GPa) 

Second order elastic 
constants (1012dyn/cm2) 

Cause  of failure  or maximum 
stress 

C11 C12 

Flahive et 

al [42] 

4.4279 3.973 11.98 1.978 .876 Failure in tension ( ab1=0) 

4.0783 4.0783 0 2.2433 1.435 At equilibrium  

3.7334 4.245 -5.37 1.95 1.826 Failure in compression ( ab2 = 0)  

5.45 3.9129 32.813   Maximum stress in tension 

3.2 4.6141 .072   Maximum stress in compression 

3.14 4.652 0   During compression, the region 

where stress is positive  3.22 4.6 0   

3.225 4.598 0   Minimum energy in compression 

Milstein 4.5339 3.928 16.78 2.821 1.25 Failure in tension ( ab1=0) 



                  International Journal of Engineering Applied Sciences and Technology, 2020    
                                         Vol. 5, Issue 4, ISSN No. 2455-2143, Pages 390-398 
                                Published Online August 2020 in IJEAST (http://www.ijeast.com)                                                                                                                                                                                                                                                                                                                                                                                                                    
 

396 

 

[43] 4.0783 4.0783 0 2.512 1.791 At equilibrium  

3.012 4.7 -42.7 6.136 1.809 Failure in compression (B23 = 0)  

7.4 4.0017 136.357   Maximum stress in tension 

Maximum stress in compression is not found 

Minimum energy in compression is not found 

 

Table 3 Computed results for Morse potential [42, 43] 

 

 

Potentials  a1(Å)  a2(Å) σ1 

(GPa) 

Second order elastic 

constants (1012dyn/cm2) 

Cause  of failure  or maximum 

stress 

C11 C12 

Hilicioglu 

et al [44] 

4.495 3.98 22.5 1.978 .809 Failure in tension ( ab1=0) 

4.0783 4.0783 0 3.7768 2.1673 At equilibrium  

3.7014 4.27 -12.25 3.7686 3.1384 Failure in compression ( ab2 = 0)  

5.05 3.9581 33.099   Maximum stress in tension 

3.1 4.7323 .864   Maximum stress in compression 

3.03 4.783 0   During compression the region 

where stress is positive  3.19 4.669 0   

3.01 4.7975 -.68   Minimum energy in compression 

Zhen et al 

[45] 

4.495 3.98 22.5 1.97 .809 Failure in tension ( ab1=0) 

4.0783 4.0783 0 3.79 2.1752 At equilibrium  

3.7018 4.27 -12.25 3.766 3.136 Failure in compression (B23 = 0)  

5.05 3.9582 33.186   Maximum stress in tension 

3.1 4.7333 .944   Maximum stress in compression 

3.03 4.79 0   During compression the region 

where stress is positive 3.199 4.659 0   

3.01 4.799 -.655   Minimum energy in compression 

 

Table 3 Computed results for L J potential [44, 45] 

 

 

Many other investigators [19, 20, 23, 30] also 

calculated theoretical strength of Gold. Using 

rigorous estimation of binding energy Singh [30] has 

calculated strength of Gold and found 2.312GPa at 
2.4% of strain in tension and -1.35Gpa at -1.75% of 

strain. Using EAM Cifitci et al [19], Milstein et al 

[20] and Zhang et al [23] calculated tensile strength 

of Gold and found 3.173GPa, 10GPa and 6.31GPa 

respectively. Ho [13] and Cerny et al [46] also 

estimated strength of Gold and found 4.09GPa and 

7GPa respectively. Experimental values of strength 

of Gold whiskers are .784GPa [47] and 1.156GPa 

[48] which is less than of our calculated results. 

Tensile strength of whiskers, which usually do not 

appear to be perfect crystals, is quite low. It has been 

reported by Neugebauer [47] and confirmed by 
Blakely [48]. Thus our computed results of strength 

using K. D. potential are same order in magnitude of 

experimental and calculated results of other workers. 

However the computed results of Morse and L - J 

potential are 2 to 3 times higher than the computed 

results of other investigators. 

 

IV. CONCLUSIONS 

 

As per our knowledge no one calculated theoretical 
strength of Gold using two body potentials. Many 

workers estimated strength of Gold using EAM, 

simulation techniques and pseudo potential approach. 

As we know that the calculations with two body 

potentials are simple and they are also used in 

simulation techniques so the estimation of 

mechanical properties using two body potentials are 

also important. Our computed results show that the 

estimated strength of Gold is fairly match with 

experimental results and computed results of other 

investigators. For all potentials, the nature of 

variations of lattice parameter a2, stress and energy 
per unit cell with a1 are same. Second order elastic 

constants at failure points are also calculated which 

are not reported by other worker except Singh [30]. 

This study also show that the two body potential 

which is used and developed by Kuchhal and Dass 
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gives better results in comparison to Morse and L–J 

potential.        
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