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Abstract—in this work, we have discussed the solutions of
partial differential equations nonlinear in Three
Dimensions by Combining the Adomian decomposition
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l. INTRODUCTION

The method was developed from 1970 to the 1990 by George
Adomian the chair of the center for applied mathematics at the
university of Georgia in (USA) is called Adomian
decomposition method (ADM) is a semi analytical method for
solving ordinary and partial nonlinear differential
equations.[1-6]

P. S. Laplace (1749-1827) introduced the idea of the Laplace
transform in 1782: [7-10] The Laplace transform denoted by
the operator L is defined as

L[f t):p)]=["e”f (t)dt , t>0
[f®):p)]=[ ef )t , t> "

The main objective of the study is to extend the method of
decomposition algorithm to convert one-dimensional
Laplace Adomian decomposition method to three-
dimensional Laplace Adomian decomposition method to
solve nonlinear partial differential equations. The advantage
of this method is Its capability to combining two powerful
methods to obtain accurate solutions to nonlinear  three-
dimensional equations, Several examples are given to re-
establish the effectiveness of this method. [11-13]

Il. PROPOSED ALGORITHM

A. Theorems and Definitions of triple Laplace transform

Definition: 1 Letf (x,y,t) be a function that can be

expressed as convergent infinite series, and let (x,y,t) eR, ,

then, the triple Laplace Transform is denoted by:
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Li[f (x.y.1):(c.p.6) ] =

[0 ] e (x,y tydxdydt

wherex,y,t >0and o, p,o are Laplace variables, and

@

oxp_L
[_

27i

jj_fifef"tf (o, p,t)d 81 pld &

f(x,y,t):%jwiwe 5

a—iw

J-/}+iwepy [ 1
pieo 27i

is the inverse triple Laplace transform denoted by L;l .

Theorem: 2 letf (t) be inS and letF, (p) denote Laplace
transform of nth derivative, f "(t) of f (t) , then for n >1

F() =R (o) -3 "4 9 (0) ©

To obtain Laplace transform of partial derivative we use

integration by  parts, ~and  then  we  have
L, W}:éF(a,p,(S)—F(U’PvO)'
- 2
L, w}=§2F(0',p.5)—5|:(0',p,0)—w'
L at at
[ A3
L, %:(a,p,ﬁ)}=UP5F(6,/J,5)+0“F(0,0’0)+

pF (0, p,0)+6F (0,0,8) — opF (o, p,0)—

o6F (0,0,6) — pSF (0, p,6) —F(0,0,0) 4

B. Theorems and properties of triple Laplacetransform
Decomposition Method for PDEs —

In this section, we to illustrate the basic idea of this method,

we consider a general non-linear no homogeneous partial

differential equation

o"u(x,y,t)

T +Ru(x,y,t)+Nu(x,y,t)=g(x,y,t),

®)
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Where m =1, 2,3, with the initial conditions

FTUYD f xy), m=123 (6)
atm t=0
where Juky.t) is the partial derivative of the function

u(x,y,t)of order m(m=2123),, R is the linear

differential operator, N represents the general nonlinear
differential operator, and g(x,y,t)is the source term.
Applying the triple Laplace transform (denoted in this paper
by L,) on both sides of Eg. (5), we get

L{%}d [Ru(x,y,t)]+

Lo[Nu(x,y t)]=Ls[g(x,y 1)],
Using the properties of Laplace transform, we obtain

S"LyJulx,y.t)]= 25’“ K —a U(é),(tky 0)

L[a(x,y.,t)]- 3[Ru(x,y,t)+Nu(x,y,t)],
Where m =1, 2,3, and thus, we have

L[u(x yt)] Z&lkw

()

®)

S "L[a(x,y.t)]-6" LS[Ru(x,y,t)+Nu(x,y,t)], 9)
Operating the inverse transform on both sides of Eq. (9), we
get

U(X,y,t)ZG(X,y,t)—

L' (6 E [Ru(x,y,t)+Nu(x,y t)]), (10)
where G (x,y,t), represents the term arising from the source

term and the prescribed initial conditions.

The second step in Laplace transform Decomposition Method,
is that we represent the solution as an infinite series given
below

u(x,y,t)=>u,(x,y.t) (11)
n=0
and the nonlinear term can be decomposed as
Nu(x.y.)=3A,, (12)
n=0

where A, are Adomian polynomials of ugy,ug,u,,---u, and it
can be calculated by the formula given below

A, 19 Iy > Au; |, n=0123.. (13)

ntoA" = 10

Substituting (11) and (12) i;1 (10), we have

ZU (x,y,t)=G(x,y,t)— Ll[(s L{RZU +ZA

ey

(14)
On comparing both sides of the Eq. (14), we get

38

uo(x,y,t) :G(X:y't),
u (x,y,t) =—L’1(5”“L [Ruo(x,y,t)+A0]),

u,(x,y,t)=—L" (6 "L [Ru,(x,y t)+A,]),

ug(x,y,t):—L’l(é’mL[Ruz(x,y,t)+A2]), (15)
In general, the recursive relation is given as
Uy (6, 1) ==L (8 L[Ru, (x,y 1) +A,]), (16)

where m =1,2,3, and n >0, :
Finally, we approximate the analytical solution u(x,y,t)by
truncated series

w0,y 1) = lim S, 0,y 1) a7)

IIl.  EXPERIMENT AND RESULT

In this section, we apply triple Laplace decomposition
method for PDEs to solve nonlinear partial differential
equations of the three-dimensional.

Example 1:  Consider nonlinear partial differential equation
U (x,y 1) +6u(x,y,t)u, (x,yt)+u, (x,y,t) = 0(1g)
with initial conditions u(x,y,0) = xy
Solution: Let us rewrite Equation (18) as:
U (X Y ,t):|:-6U(X 'Y ,t)UXy (X Y ,t)'UXX (X Y ,t):'
By taking the Laplace transform to both sides
Ly fu, (x,y,1)]=L, [—6u(x YU, (XY E)-uy (X, y,t)]
(19)
Recall that L, [u, |=6F (o, p.8)—F (0, p,0)
So Equation (19) becomes;
OF (o, p,8)—F(o,p,0) =
L3 [—6U(X Y lt)uxy (X Y 1t)_uxx (X Y ,t)]

(20)
A taking the given initial conditions on Equation (20) and
simplifying, we obtain;

1

T (O'ap15) ZT—%L3|:6U(X,y vt)uxy (vait)+uxx (X,y ,t):'

(21)
A taking the inverse triple Laplace transforms to Equation

(21) , we have;
_1
o’ p’s

L," {% L, [ Bu(x,y thu,, (x,y,t)+u, (x,y 't)]}

The resulting expression is
u(x,y,t)=xy -

U(X,y,t)=|_3l|:
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L,* {% L[ 6u(x,y,tu,, (X,y )+u, (x,y 't)J}

(22)
From Equation (22) letu,(X,y ,t) =Xy
The recursive relation is given as:
L1 o’u, (x,y,t)
L'InJrl(X Y ’t) = _L3 1{5 L3 |: 6'A‘n +T
(23)

Note that An is the Adomian polynomial to decompose the
nonlinear terms by using the relation:

1 drI o0 i
A =— f CA'u (Lt
" nldA [z.:o U Oy ):|z:0 (24)
Let the nonlinear term be represented
ou(x,y t
f [u(x,y,t)]zu(x,y,t)%
(25)
By using Equation (25) in Equation (24), we obtain;
2
Aozuo(x7y’t)M’
OX oy
Uy (x,y,t) ou, (x,y,t)
A =u,(X,y,t)—2 2 gy (x,y ) 2
11(y)ax8y °(y)axay
2
Azzuz(x7y,t)w+
OX oy
2 2
UI(X,y,t)M+U0(X,y,t)M,...
OX oy OX oy

From Equation (23)
When n=0, we have

411
u1(Xny’t):_L31{gL3 ox 2

1o

By simplifyingu, (X, y ,t) = —6xyt
When n =1, we have;

'6A0+azuo(x,y,t>}}

is computed as: A, = XY

a1
Ul(X,y,t)z—L3 1{5'—3

6xy +

Rk o’u,(x,y,t)
uz(xiy!t):_le{EL3_6A1+l(9X—z
is computed as: A, = —12xyt

S [ 0
u,(x,y,t)=-L, ELS_-72xyt+6X2[—6xyt]

By simplifyingu, (x,y ,t) = 36xyt?

The approximate series solution is

u(x,y,t) =xy —6xyt +36xyt> —216xyt° +...
This can be written as
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u(x,y,t)=xy [l—6t +[6t]2 —[6t]3+..}

By using Taylor’s series, the closed form solution will be as
follows

Xy

1+6t
Example 2: Consider nonlinear partial differential equation

u(x,y.t)=

u, (x,y,tHu (x,y,t)—u,, (X, y,t) =u(x,y,t) (26)

with initial conditions
u0y.t) =yt , u, (0,y,t)=-1
Solution: Let us rewrite Equation (26) as:
Uy (6, y,0)=u, (Y Hu (XL y ) —ulx, y s t)
By taking the triple Laplace transform to both sides
L3 [uxx (X Y ,t)]:L3 [uy (X VY ’t)ut (X Y ,t) —U(X Y ,t)]

Recall that

(@7)

Ly[u, (X, y,1)]=6°F (5, p,8) —F (0, p, 5)-@
X

So Equation (27) becomes;

oF(0,p,06)

X

L[ u, ¢,y Du (x,y, 1) -u(x,y,1) ]

(28)

taking the given initial conditions on Equation (28) and

simplifying, we obtain;

1 1
Flo,p.0)=—FF5———-
(0.0.0) op’s® o’pd

1
S Lutcy 0-u, 06y 0u 0y 0] 9)

A taking the inverse triple Laplace transform to Eq. (29), we
have;
1 1

i
L, {%Ls[u(x Yt =, (Y U, (X:y’t)}}

The resulting expression is
u(x,y,t)=yt—x —

a1
L, l{yLs[u(x,y,t)—uy (x,y.t)u, (X,y,t)}}
From Equation (30) letu,(x,y,t) =yt —x
The recursive relation is given as:

un+1(xly !t) =_L3_1 {% L3|:An

o’F (o, p,6)—cF (0, p,8) -

(30)

_ou, (x,y.t) ou, (x,y.t)
oy at

(31)
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Note that An is the Adomian polynomial to decompose the

nonlinear terms by using the relation:
1 d n 0 |
A, —mmf [Zi:oﬂ u, (x,y,t)}

Let the nonlinear term be represented

f [u(x,y,t)]=u(x,y,t)

By using Equation (33) in Equation (32), we obtain;
A0 ZUO(X,y,t) ’

A =U (X, Y, t) +ug(x,y,t),

A, =u,(x,y,t) +u (X, y,t) +uy(x,y,t),...

From equation (31), when n=0, we have:

A=0

(32)

(33)

0,0y 1) =L L Ay - eyt (.Y
o L oy ot i
is computed as: A, = yt —x
N oyt =x] o[yt —x1]|
ul(x,y,t)=—|_31{?L3_[yt—x]— Y a

3

By simplifyingu, (x,y ,t) =%

The approximate series solution is

x* x®* 1, x 3
U(X,y t) =yt =X +=———"— —=x2yt +=—...
y.D=y 31 51 2 y 3!

This can be written as

x® x°
u(x,y,t)=yt —{x —§+a—
By using Taylor’s series, the closed form solution will be as
follows

u(x,y,t)=yt —sinx

IV. CONCLUSION

This work discussed the definition of the triple Laplace
transform that was applied Some important theorems and
properties have been presented for this relatively new
transformation to find solutions for partial differential
equations in three dimensions under the initial conditions, the
triple Laplace transform study succeeded in achieving
solutions.
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