
 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 8, ISSN No. 2455-2143, Pages 36-48
 Published Online December 2020 in IJEAST (http://www.ijeast.com)

36

A SURVEY OF THE HOST HYPERVISOR

SECURITY ISSUES PRESENTED IN PUBLIC

IAAS ENVIRONMENTS AND THEIR

SOLUTIONS
Paul Cullum

 Cyber Security Master’s Degree

 Manchester Metropolitan University / HKU Space

 Hong Kong

ABSTRACT - The use of virtualization can be attributed

to the success of cloud computing. However, usage of a

hypervisor in a shared environment among mistrusting

users presents significant challenges. This paper surveys

the works on host hypervisor security issues presented in

cloud computing, performing a short review of current

literature on the subject. Addressing several key topics,

namely threats and known attacks against the hypervisor

or a virtual machine (vm) that exist in a shared

environment.

This paper also contains a thorough review and

comparison of the current solutions and proposed

mitigations for the known attacks and identifies any

potential gaps. Aiming to uncover if a hypervisor can

provide the level of confidentiality, integrity and

availability expected by cloud consumers. Research is

critically analyzed and consideration for each solutions

suitability of implementation in an Infrastructure as a

Service (IaaS) environment is applied, including the

impact on performance, if any.

KEYWORDS - Hypervisor security, virtualization,

Cloud computing Security, IaaS security.

I. INTRODUCTION

Virtualization provides the foundation for many Cloud

service providers (CSP). The core advantages and selling

points of Cloud computing are well documented as

elasticity, reductions in operational overhead and capital

expense and scalability of resources. All of which are

fulfilled with the help of virtualization in a cloud computing

environment.

It is observed that when shifting from an On-Prem private
cloud model to IaaS public cloud, the management and

responsibility for the virtualization and physical server layer

shifts to the CSP as per figure 1. It is this layer that is not

natively accessible or even visible to the cloud consumer.

Figure 1. Shared responsibility model of cloud computing

(Source

https://medium.com/@oscarpalaciosmontoya/cloud-

models-and-the-shared-responsibility-in-public-cloud-

c0a78e205369)

Placing this level of trust in the CSP is often overlooked by

cloud consumers and should be a key consideration when
placing vm’s that have sensitive data or critical workloads

into IaaS public cloud environments. Cloud services by

nature are always on and remotely accessible from the

internet, the traditional network perimeter protection

boundaries offered in an On Prem environment are either

removed or operate in a reduced capacity.

1.1. Multi-tenancy

IaaS public cloud environments provide an economic, cost

effective solution due to their multi-tenancy nature. Multi-

tenancy refers to sharing the hosting infrastructure and the

sharing of the address space across a number of cloud

consumers. What this translates to in practice is that a cloud
consumers vm, data or application could reside on the same

physical machine or server as a malicious threat actor or

even a malicious competitor. Consumers theoretically have

https://medium.com/@oscarpalaciosmontoya/cloud-models-and-the-shared-responsibility-in-public-cloud-c0a78e205369
https://medium.com/@oscarpalaciosmontoya/cloud-models-and-the-shared-responsibility-in-public-cloud-c0a78e205369
https://medium.com/@oscarpalaciosmontoya/cloud-models-and-the-shared-responsibility-in-public-cloud-c0a78e205369

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 8, ISSN No. 2455-2143, Pages 36-48
 Published Online December 2020 in IJEAST (http://www.ijeast.com)

37

no visibility or insight into the precise location of their vm,

data or application location nor do they have visibility into

the other tenants sharing the physical host infrastructure

alongside them. CSP’s have a huge reliance on the

hypervisor as the core security solution to isolate consumers

from each other and ensure that data is not accessible

between tenants. Due to this dependency on the security of

the hypervisor a clear single point of attack is presented.

Vulnerabilities do exist and will likely continue to exist, and
so this expected, and often overlooked level of isolation,

may not always be achieved or adhered to.

A large proportion of the cloud’s value proposition is

centered around the shared nature of cloud resourcing and

the underlying hardware and compute such as memory, disk

and CPU resources. This includes the capability to deliver

resourcing both dynamically and on demand. Thus,

empowering organizations to operate with a far greater level

of flexibility than previously achieved with traditional

environments. This transformation in which customers

require flexibility whilst still maintaining a high level of

isolation from malicious tenants or threats presents
substantial challenges. Cyber criminals are presented with a

unique opportunity due to the multi-tenancy that simply is

not available in an On Prem private cloud [5].

1.2. Hypervisors

The issues and threats that pertain to hypervisors within

public cloud computing also exist in private clouds, however

the threats to virtualization are simply amplified in Cloud

computing due to the shared infrastructure between

untrusting customers.

The hypervisor is considered a lower level of the stack and

cloud consumers do not have access or visibility at this level.

However, the hypervisor is considered the layer of
abstraction, providing logical separation across vm’s for

tenants. The hypervisor is used to manage and control all

vm’s, it is for this reason that the hypervisor becomes a

single point of failure and provides a large attack surface

within a cloud architecture. If a malicious actor were to

compromise the hypervisor this would automatically result

in the compromise of all the underlying vm’s. Below figure

2 shows a typical hypervisor and vm relationship in a type 1

hypervisor often employed in IaaS architecture.

Figure 2: Type 1 Hypervisor high level view relative to user

and kernel mode

(https://www.researchgate.net/figure/Hypervisors-Type-1-

and-Type-2_fig1_224202390)

1.3. Survey Aims

The aim of this survey paper is to collectively review the
latest research into solutions that address known attacks

against a hypervisor or known attacks leveraging

virtualization presented in a cloud computing IaaS

environment.

This survey paper takes the hypothesis that there is no single

solution to address all known hypervisor threats presented in

public cloud IaaS computing environments, and that a

hypervisor alone does not provide effective isolation.

1.4. Methodology

The methodology of the survey paper will review current

solutions or mitigations and measure them for effectiveness

in mitigating the mentioned known attacks, taking into

consideration the solutions impact on performance, if any,

and a brief view of the feasibility for CSP’s adopting or

implementing the proposed solutions. Papers have been

selected from tier 1 sources based on their forward-thinking
ideas and relevance to address the known attacks and ability

to build upon previous research.

II. THREAT MODEL

The cloud security alliance report 2019 [3] lists abuse in the

cloud as one of the top 11 threats to cloud computing.

This survey paper will focus on the known attacks that exist
in a public cloud IaaS environment due to virtualization and

sharing of physical host infrastructure, resulting in the co-

residency of vm’s and the solutions presented to address the

attacks.

The threat model will focus on attacks from a malicious vm

breaking out of the isolation boundary and compromising the

hypervisor, or an unsuspecting tenant’s vm or administering

https://www.researchgate.net/figure/Hypervisors-Type-1-and-Type-2_fig1_224202390
https://www.researchgate.net/figure/Hypervisors-Type-1-and-Type-2_fig1_224202390

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 8, ISSN No. 2455-2143, Pages 36-48
 Published Online December 2020 in IJEAST (http://www.ijeast.com)

38

resource exhaustion-based attacks against other cloud

consumers sharing the same physical infrastructure. The

paper will also examine attacks that allow a level of

information leakage from vm’s or the underlying host

infrastructure.

To provide focus, the threat model adopted will assume that

the CSP and its administrators are trusted.

We assume that one or more cloud consumers are not trusted

and may be malicious in nature, and attempt to compromise
the confidentiality, integrity or availability of another cloud

consumers virtual machine or data or the hypervisor itself.

The cloud environment in scope is IaaS, in which the host

(CSP) has very little, if any, authority over the actions and

operations of its guests vm’s.

The list of attacks in section 2 is not exhaustive and instead

focusses on the important known attacks concerning

hypervisors and virtual machines in IaaS public cloud

environments. The known attacks listed are present in IaaS

due to the extensive usage of virtualization within cloud

computing and the shared hardware required to support this

model. Physical attacks are not in scope for this survey
paper.

2.1 Known Attacks

Vm escape

In this attack an attacker leverages a vm and interacts

directly with the hypervisor to escape from its control. In a

vm escape the vm crafts an attack to bypass the isolation

between the vm’s and the hypervisor. The attacker can gain

or elevate privileges to access the resources shared with

other VMs. Examples of this are Venom CVE-2015-3456.

Vendors take this vulnerability very seriously as it is clearly

a threat to virtualization. Microsoft have offered up to 250,

000 US dollars as a bug bounty for any proof of concept code
that can demonstrate a successful vm escape exploit in their

Hyper-V virtualization platform.

Hyper-jacking

A Hyper-jacking attack inserts a root kit that allows an

attacker to control the hypervisor and in turn the entire

virtual environment. This is achieved by inserting a thin

malicious hypervisor on-top of the legitimate hypervisor.

This represents a single point of failure as a compromise of

the hypervisor would provide access to all the vm’s that

reside under it. Previous research in SubVirt [21]

demonstrated how this would be achieved.

Denial of Service

Whilst a Denial of service attack (DoS) can take many

forms, in the context of this survey paper a DoS attack refers

to a malicious VM exhausting the hypervisor resources in its

entirety and impacting the performance of vm’s running on

the same physical host. This attack is also known as a

resource exhaustion attack, which impacts one of the core

principles for information security, availability. An example

of this attack is CVE-2017-17566,

Side channel

In a side channel attack the attacker first aims to co-locate a
malicious vm on the same physical host as a victim vm and

achieve co-residency. The attacker then constructs covert

side channels to obtain sensitive information from the
victim’s vm. A side channel attack leverages a

communication method not originally intended for the

transfer of data. This attack has caused serious concern since

the announcement in 2018 of the Spectre and Meltdown

vulnerabilities, found in nearly all Processors which leverage

a side channel to access memory locations. Side channel

attacks work by converting leakage into usable information.

Due to the non-standard use of side channel attacks they

often can go undetected from intrusion detection systems

(IDS). There are different categories of the attack relating to

the method in which the exploitation is achieved. Cache

attacks and Timing attacks are the most prominent and will
be included in this paper. In addition to the well-publicized

Spectre and Meltdown vulnerabilities, additional examples

of a side channel attack are the RowHammer attack [16]

CVE-2015-0565, in which memory bits are flipped to a new

location to alter outcomes.

III. LITERATURE REVIEW

Section 3 includes the literature reviewed for the survey

paper including current solutions with some references to

previous research.

3.1 Co-Residency

Achieving co-residency relates to the planned placement of

a malicious vm onto the same physical host as a victim’s

target vm in which to leverage one of the known attacks to

attack the target vm. Co-residency forms a large part and a

core requirement to initiate the known attacks mentioned in

section.

Achieving targeted co-residency was successfully
demonstrated in previous research [18]. In which Ristenpart.

et al were able to demonstrate an ability to achieve targeted

co-residency in Amazon’s EC2 Cloud service (AWS). This

was successfully implemented by mapping the AWS internal

cloud infrastructure using the IP address space and usage of

simple heuristics to determine accurate location of vm’s,

with the view that subnets are logically assigned between

locations for simple and ease of administration. After the

mapping launch of a malicious vm and a probing technique

using network latency round trip time variation was used to

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 8, ISSN No. 2455-2143, Pages 36-48
 Published Online December 2020 in IJEAST (http://www.ijeast.com)

39

determine when co-residence with a victim vm had been

achieved. Using this strategic approach of understanding

Amazon’s vm placement algorithm, demonstrated up to a

40% success rate. During the same attack the keystrokes

were recovered from a co-resident vm. This is very

important as it allowed a malicious attacker to locate a target

and then issue some of the known attacks against a specific

target, demonstrating a non-trivial method and exposing

novel risks within IaaS public cloud environments. Once co-
residence has been achieved a side channel attack can be

carried out.

3.2 Side Channel Attack Solutions

The mitigations in [18] listed steps towards side-channel

attacks focus on blinding techniques used to minimize the

information leakage.

The blinding techniques are expanded and further enhanced

in paper [13] which improved on previous research in [14]

in which a side channel attack is performed against memory

deduplication employed by hypervisors and the mitigations

against the attack are offered. Hypervisor memory
deduplication is a memory optimization technique

introduced to provide memory cost saving through

techniques performed by the hypervisor to identify and

merge identical memory pages across the vm infrastructure

[4] to reduce the physical memory footprint of vm’s, as

depicted in figure 3. The described attack allows a co-

resident malicious vm to perform a timing-based side

channel attack by exploiting the timing difference between a

binary that is already running in the shared memory pages

between vm’s versus the difference of a new binary. The

difference in timing reveals information on which
applications or even software versions are running on a

victim vm. Allowing a malicious vm to fingerprint running

applications on a victim vm. The mitigations offered against

this particular side channel attack in [13] are to de-activate

memory deduplication on the hypervisor altogether and lose

the cost saving features or implement encryption of vm

memory which

Figure 3 : Memory deduplication example

in turn would make it impossible for the hypervisor to
perform any deduplication unless an encryption key is

shared across the vm’s. Whilst both suggestions are

plausible this would present additional effort from CSP’s.

Requiring infrastructure changes and likely a large memory

overhead to facilitate disabling memory deduplication,

similarly enabling vm memory encryption would incur a

larger memory overhead due to an inability to de-duplicate

memory pages and would also require hardware

infrastructure changes to perform the encryption all of which

would need to be at the effort of the CSP potentially resulting

in an increase in charge back to the cloud consumer.
[13] Also suggests an alternate counter measure is to

obfuscate the vm memory by applying a randomizing

technique, which would allow memory deduplication to be

enabled, though using the fingerprinting technique

implemented the victim vm’s running applications could still

occur, albeit at a much larger memory overhead with a

requirement to probe ~5000 times as many signatures.

Essentially slowing a malicious vm down in any

fingerprinting activity but not eradicating the threat in its

entirety.

An option not considered in [13] is to build upon previous
research used in [2] and consider enabling deduplication on

zero pages only. Applications and operating systems may

zero out pages for usage in the future and this can be a

frequent occurrence, although not for an extended amount of

time. Whilst this provides less efficient memory

optimization when compared with full memory

deduplication, this method could reduce vm memory

footprint without exposing a side channel.

Implementing the mitigations offered in [13] address a

specific side channel timing attack in memory deduplication,

but do not consider mitigating threats for other available side

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 8, ISSN No. 2455-2143, Pages 36-48
 Published Online December 2020 in IJEAST (http://www.ijeast.com)

40

channels that leverage the hardware design itself, such as an

attack against the CPU cache or last level cache which is

shared across all CPU cores to prevent memory bottle necks,

figure 4 provides a visualization of the last level cache

sharing between vm’s. Research in [17] proposes an event

driven solution that uses machine learning techniques to

classify events and detect the probing techniques used within

side channel attacks in a virtualized environment,

specifically tested on the KVM hypervisor. Consideration
for performance overhead and integration into KVM’s

existing architecture was applied and the system was built

directly into the Linux kernel within KVM, reducing the

complexity required and making good use of the default

probes provided by the Linux distribution within KVM. The

machine learning model trained for the monitoring system

demonstrated in the results a clear capability to detect

patterns of any side channel cache attack, casting a wide net

on the ability for detection due to the persistent unique

probing required in a side channel cache attack. The

implementation can work directly within the host and further

improved upon the research in [24] by negating the need for
co-operation from the victim vm.

[17] mentions a small impact on the guest performance with

almost zero impact to the host performance, though this has

not been quantified in the paper. The model used in [17]

leverages a trained class for known attacks and an untrained

class, the latter is implemented to detect new side channel

attacks that the model has not seen. The results demonstrate

low false positives and low false negatives providing good

future use to detect new unseen side channel attacks,

examples of this could be any predecessors to Spectre and

Meltdown. A clear draw-back is that a real-world
implementation would only provide monitoring for a CSP

and in its current state does not offer any prevention against

a malicious vm from initiating an attack or ceasing an attack

in operation, the CSP would need to implement corrective

measures and the cloud consumers safety could depend on

the CSP’s ability to react promptly. No attempt was made to

look at segmentation of the CPU last level cache between

tenants and due to the threat model assumptions in [17], the

solution could not cater for a compromised hypervisor.

Figure 4: Last level cache sharing example (source

https://www.researchgate.net/figure/Cross-VM-side-

channel-attack-using-a-shared-last-level-

cache_fig2_327314423)

3.3 Resource Monitoring

Cloud computing’s always on nature is a key requirement

for cloud consumers. It is therefore paramount that the

availability of virtual machines is guaranteed and not

negatively impacted by a malicious vm sharing the same

physical host. In [25] a solution is implemented to detect and

prevent a DoS attack initiated from a co-resident malicious

vm. The solution consists of a set of testing programs to

monitor a host’s resource usage. [25] considers DoS attacks

against memory, CPU, disk and network. The testing

programs perform a set of repeated tasks for the hosts disk,

memory and network to form a set of samples that are run on
an offline host running the same hardware, this essentially

creates a baseline. The testing programs then run on all hosts

and a probability method is used to determine any deviations

from the baseline that may indicate a DoS attack. After an

attempted host DoS attack is detected the testing program

will restrict resources from the suspected malicious vm for a

short period, focusing on the area effected such as disk or

memory, and if by performing the restriction the host

performance improves then the identified vm is further

confirmed as malicious and additional action is taken such

as migrating the malicious vm to an alternate host or shutting
the vm down.

The initial identification and pinpointing process indicates

that thought has been given towards a method for managing

false positives and not impacting an innocent vm that may

have an irregular request for resources from the host.

Evaluation on the impact of the testing programs

performance overhead on the host has been applied and

https://www.researchgate.net/figure/Cross-VM-side-channel-attack-using-a-shared-last-level-cache_fig2_327314423
https://www.researchgate.net/figure/Cross-VM-side-channel-attack-using-a-shared-last-level-cache_fig2_327314423
https://www.researchgate.net/figure/Cross-VM-side-channel-attack-using-a-shared-last-level-cache_fig2_327314423

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 8, ISSN No. 2455-2143, Pages 36-48
 Published Online December 2020 in IJEAST (http://www.ijeast.com)

41

results on monitoring memory, network or disk attacks does

not incur any performance overhead. As part of the

evaluation there has not been an attempt to see if multiple

co-resident malicious vm’s initiated simultaneous DoS

attacks against the host how the testing program would

handle this, as part of the threat model [25] assumes that only

one vm per host is required to perform a DoS attack.

In [8] a solution is presented to detect DoS attacks even if

the hypervisor has been compromised, secure resource
allocation for the vm’s is implemented by using a probing

mechanism executed from the hosts CPU system

management mode (SMM) which provides a higher

privileged environment above that of the hypervisor

ensuring protection and isolation against a compromised

hypervisor. The SMM is normally used to handle privileged

instructions outside of normal operation. The hypervisor is

excluded from the trusted computing base (TCB) in this

solution in which only the hardware and BIOS are included

in the TCB. A sample-based approach performs random

probing of the CPU and memory allocation, the probing

program resides in System management RAM (SMRAM)
installed within a customized BIOS on the host machine,

though no hypervisor modifications are required. Near 100%

accuracy is recorded for memory and CPU reporting.

 The architecture also uses a dedicated proxy server to

manage user requests to create new vm’s , delete vm’s and

manage vCPU creation all of which are forwarded from the

proxy to the hypervisor. The proxy is also used to check on

resource usage and is connected via a serial device from

proxy server to host. Architecture is shown in figure 5.

An out of band network channel is suggested as a further

improvement option for bandwidth and scalability and to
secure communication between the proxy and hypervisor,

however beyond this no additional thought has been applied

to further secure the proxy server which provides an attack

surface if an attacker were to gain unauthorized access,

whilst the hypervisor has been deprivileged in some aspects

by leveraging the SMM, a proxy server has been introduced

and further hardening of the proxy should be considered.

Figure 5: host resource accounting architecture

Performance overhead of the system is considered and

normalized performance testing across a diverse range of

applications running on the vm’s was applied. For average

workloads the performance overhead is between 1 – 2%,

however for CPU intensive workloads the performance

degradation is high with impact on the sampling.

It is also noted that unlike [25] there is no provision for the

monitoring of disk or network usage within the solution and

the focus is entirely on CPU and memory accounting. In the

event the hypervisor was compromised in [8] the solution

would still be able to continue probing for resource
allocation, however based on the design it is probable that an

attacker would be able to cause damage to the availability of

the host or co-resident vm’s in the event the hypervisor is

compromised as this solution focuses on verifying CPU and

memory resources under a vulnerable hypervisor rather than

protection of vm’s and the vm data as implemented in

previous papers [15] .

3.4 Hypervisor modifications

Alluding to the simple idea that the hypervisor provides the
attack surface and is the weakest link it has been suggested

in NoHype [10] that removing the hypervisor from runtime

is one approach that could be considered. NoHype

architecture is proposed to modify and remove the
hypervisor from runtime and therefore the requirement to

defend the hypervisor. An attempt is made to preserve some

of the connotations of virtualization whilst removing the

interactions a vm can have with a hypervisor. Aiming to

protect against vm escape and Hyper jacking known attacks.

In the NoHYpe architecture the codebase is minimized to

reduce the attack surface. The view is that due to the

multiple lines of code (LOC) in a standard hypervisor a

larger attack surface is presented.

In the NoHYpe architecture each CPU core is directly

allocated to a single vm, ensuring guest vm’s cannot share
CPU cores. Memory is also pre-allocated. A temporary

hypervisor is used only to run at initialization, rather than the

traditional vmm operating at run time.

Removing the hypervisor altogether whilst may seem

plausible would require a drastic paradigm shift for CSP’s.

A clear draw back to this proposed architecture surrounds

restricting the ability for guests to share CPU, which in turn

is actually one of the major selling points of virtualization.

Whilst performance is not measured in this paper, as

resources are pre-allocated and this could result in

underutilizing CPU and memory,

Flexibility and scalability of virtualization resources are lost
due to the cost of a single core per virtual machine. The

ability to over subscribe also is not possible with the

NoHYpe architecture, as well as dynamic resource

allocation. Some of the core advantages of cloud computing

are removed, demonstrating a tradeoff between security and

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 8, ISSN No. 2455-2143, Pages 36-48
 Published Online December 2020 in IJEAST (http://www.ijeast.com)

42

economic value. In NoHYpe there is still a management vm

that can provide an avenue to attack and impact the virtual

environment.

An alternate idea in a solution named HypSec [12] is to

modify and retro fit the existing KVM hypervisor rather than

recreate a new hypervisor. Continuing with the theory in [10]

and previous research in micro hypervisor, Nova, [19], that

a large codebase within the hypervisor represents risk due to

complexity and vulnerabilities. HypSec aims to reduce the
trusted computing base (TCB) by leveraging microkernel

principles. A trusted core, labelled corevisor, is created that

provides access control to vm data and provides the CPU and

memory virtualization. The hypervisor is partitioned into a

non-trusted host, labelled hostvisor, performing hypervisor

functionality with no access to vm data. Providing protection

against a vm escape and hyper jacking attack.

Previous attempts in nested virtualization [22] that retro fit a

hypervisor yet fail to provide full support of virtualization

features are considered in HypSec. The viewpoint is taken

that the hypervisors that are built on Linux (KVM and Xen)

also inherit all of the vulnerabilities and bugs associated with
the Linux kernel. HypSec’ s design retains the Linux kernel

and moves this to an untrusted hostvisor away from the

corevisor. Isolation and protection of the trusted core is

achieved using hardware virtualization, execution is at a

higher level of privilege so that virtual machine exceptions

are mediated and protect vm data is contained within CPU

and Memory.

In the interest of protecting VM Data the corevisor

intervenes privileged instructions, such as VM EXIT and the

exit reason determines if the corevisor handles the exit

directly or if there should be a switch to the hostvisor to
handle. This step will provide a performance overhead when

deciding to hand off or handle the instruction directly.

The transition from non-root mode to root mode is called

VM EXIT and the opposite is called VM ENTRY. In the

architecture for Hypsec the hostvisor is deprivileged and

must call VM ENTER for the corevisor to execute a vm.

Performance testing reveals up to a 19% performance

overhead on the number of CPU cycles when HypSec is

compared to a standard KVM hypervisor, this is due to the

corevisor interposing on the trap and emulation and potential

transfer to the hostvisor. Whilst this handoff to the hostvisor

is considered to simplify the TCB there is a clear detriment
to performance. Evaluation of practical attacks is also

completed and compared with KVM, providing further

protection against privileged escalation attacks that KVM

are vulnerable to.

Whilst the privileged corevisor is deemed to be secure there

is little evidence of further hardening to support this.

Figure 6: HypSec architecture

Similarly, to [12] control of privileged instructions in
FWinst [7] the focus is on hardening the hypervisor to

effectively secure all instruction emulation and the
interaction of privilege instructions from an application on

the vm in the ring 3 user space to the vmm in ring 0. This

emulation is required as part of the standard trap and emulate

behavior of virtualization in which sensitive actions are

attempted by a vm and allow a vm to operate as if it is a

physical machine. Actions such as direct access to the

hardware, are trapped by the vmm to take control and then

interact with the hardware as necessary and return the

appropriate information to the vm. This emulation process is

complicated and can be prone to errors which results in

vulnerabilities that can lead to a vm escaping the isolation
boundary and compromise of the hypervisor facilitating a

vm escape or a host-based DoS, which FWinst can protect

against. The emulator should validate privileged instructions

and ensure they are executed from the correct ring code

segment and not directly executed from a lesser privileged

code segment such as ring 1-3.

Unlike Hypsec which selectively hands off to the corevisor

for privileged instructions, FWinst uses an instruction filter,

positioned between the VM Exit handlers and the instruction

emulator (Figure 7). Based on a list of pre-programmed

legitimate instructions for each context taken from the VM
Exit reason. FWinst provides firewall like properties for

privileged instructions from vm to instruction emulator. An

inability to provide validation of privilege and prevent

emulation of sensitive instructions from ring 3 has appeared

as a common vulnerability in the Xen hypervisor as seen in

CVE-2014-7155. From this list FWinst is able to filter out

illegitimate instructions from a malicious vm and reduce the

attack surface.

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 8, ISSN No. 2455-2143, Pages 36-48
 Published Online December 2020 in IJEAST (http://www.ijeast.com)

43

The overall performance overhead at runtime is stated as less

than 2.5% using standard benchmarking tests. FWinst is

implemented in KVM and performance tested with

Windows and Linux vm’s. It was proven in research from

Amit et. Al [1] that an attacker can force any instruction,

including non-privileged, to be emulated and so an approved

filtered instruction list certainly has a place in further

securing a hypervisor.

Challenges for the CSP would be in maintaining the list of
legitimate instructions within FWinst if ever there were

changes to architecture, similarly if unauthorized access to

the hypervisor was gained there is an avenue to amend the

list of legitimate instructions potentially undetected. FWinst

uses only 279 LOC and it is also lightweight as per [12 and

10]. Whilst FWinst clearly addresses the known threat of a

vm escape, the coverage of preventing a DoS attack against

vm’s in its entirety is questionable, if the hypervisor was

compromised via a method other than vm escape this would

allow a malicious actor to impact the availability of all vm’s

on the compromised host.

Figure 7: FWInst instruction filter architecture

In blind hypervison [6], the hypervisor is deprivileged,

similarly to HypSec [12], so that in the event of compromise

via a vm escape attack the underlying vm’s data is

inaccessible to the hypervisor. Focusing on the privacy

concerns if a hypervisor was compromised that a consumers

vm data would be safe. In this architecture a master server

and one or more host servers are implemented. The master
controls the overall global system state and the hosts have

the deprivileged hypervisor installed. The master acts as an

authentication authority responsible for the deployment of

new vm’s and ensuring confidentiality between the vm and

hypervisor.

The master server can run on standard hardware, however

the host requires specific hardware components that are used

to encrypt and decrypt the vm data and loading them into

memory, storing the private key. The hosts also require an

extended memory management unit to further enforce

isolation and creation of specific execution modes

customized on the host for protection from unauthorized

access. Symmetric keys are used to encrypt and decrypt

memory between the master and the host to guarantee

confidentiality of the vm data. Essentially by modifications

in the hypervisor and the addition of the host memory

protection of the vm’s is achieved.

Implications into the performance overhead on the host and
underlying vm’s running in this architecture have not been

evaluated. The design and research is focused towards

protecting vm migration between hosts and communication
across the network as all vm migrates can only be initiated

from the master. There is no consideration into the hardening

of the master which could provide a single point of failure

within a cloud IaaS deployment. The additional hardware

requirement in each host and software modifications may

also present challenges for CSP’s, coupled with

administrative overhead to the manage and maintain the

master servers. As per [12 and 7] there is focus towards

control of privileged instructions, however the introduction

of non-standard instructions into the hosts may also present

supportability and compatibility challenges.

HyperPS [23] aims to implement a hypervisor monitoring
solution that provides event monitoring of interactions

between a vm and a hypervisor. An isolated space is created

by separating privileges in which HyperPS monitors the

hypervisor at runtime and is able to operate on privileges no

higher than the hypervisor. The approach tackles the idea

that when the kernel and hypervisor address space is shared

additional security is required to protect vm’s from a

compromised hypervisor.

The standard hypervisor has the control of any security-

sensitive system resources removed such as a VM Exit

hypercall or manipulation of page tables or vm memory
mapping. Hooks are used to forward privileged instructions

such as VM EXIT from the hypervisor directly to HyperPS,

essentially transferring the control flow and adopting similar

focus on control of privileged instructions as observed in [6,

7, 12]. HyperPS uses an additional page table to achieve an

isolated address space upon which to run, ensuring there is

no mapping of virtual to physical in the hypervisor address

range, preventing compromise of a hypervisor with known

attacks vm escape and hyper jacking.

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 8, ISSN No. 2455-2143, Pages 36-48
 Published Online December 2020 in IJEAST (http://www.ijeast.com)

44

 Figure 8. Hyper PS architecture

An impact on performance was evaluated and due to the

requirement of the creation of a new memory page table for
HyperPS and allocating memory pages an impact on the

speed vm boot times is seen up to 1.09 times slower when

compared with KVM. Relative performance testing on the

whole system was achieved using application and micro

benchmarks, up to a 4% performance overhead was

observed. Additional hardening of the HyperPS world is not

considered in the research and would also present an

additional attack vector for a malicious tenant.

3.5 Hypervisor removal and vm modifications

Previous research in [15] proposed to modify the vm and
implement a unikernel in which the user space and kernel

space share a single address space. Unikernels, whilst
running on traditional hypervisors such as KVM, restructure

vm’s into secure and flexible components by adopting a

minimalist approach and provide the minimum number of

libraries needed to run. The standard TCB is modified and

the user space and security kernel space share a single

address space on a lightweight vm. Within the single

address space, the typical drivers or support library functions

expected within a standard OS are excluded and only the

required libraries and functions needed to run the application

are included, and nothing else. A small monitor process is

required to interact and manage privileged instructions or
hypercalls between the unikernel and hypervisor and

hardware for I/O. This was considered an improvement to

the security of vm’s by reducing the attack surface when

compared with a traditional vm due to the absence of drivers

or unnecessary I/O commands and non-essential libraries.

Unikernel supporters also argue that due to the single

address space applications no longer run in ring 3 and now

operate in ring 0. Negating the need to switch contexts

between the traditional user and operating system boundary

seen with a standard TCB and is recognized as allowing

operations to run faster providing a performance increase.

[21] aims to build upon the Unikernel principles in [15] and

implement unikernels to run as processes whilst retaining the

isolation benefits from their vm- like properties. In [21] the

solution proposes to remove the hypervisor completely. This

further enforces the principles used in NoHype [10] by

completely removing any trace of the hypervisor, instead of

simply at runtime. If the hypervisor does not exist then the

vulnerabilities pertaining to a hypervisor should be removed,

resulting in mitigation against Hyper jacking and vm escape.
[21] proposes to implement a tender process, depicted in

figure 9 which builds upon the ukvm used in [15]. This

tender process also contains the unikernel and maintains exit

handling for interaction with I/O devices directly and setup

of the unikernel. Multiple copies of unikernels can run on a

single host and the tender process is able to ensure that the

unikernel binary is shared in memory by the host for memory

efficiency across unikernels. A whitelist of system calls in

the kernel is used to maintain isolation. This aims to improve

on the considered limitations of hardware virtualization and

the use of a hypervisor with techniques such as memory

ballooning which although provide memory efficiencies,
operates at the expense and trade off of extra CPU cycles.

[21] also aims to improve on the design in [15] that requires

a switch between the context of the vm and monitor, an

increase in hypercalls to perform the context switching was

found to more than double the CPU cycles when compared

with a direct function call as introduced by implementing the

unikernel into the tender process and removal of the

hypervisor. Ultimately removing the context switching

results in better performance and is demonstrated in the

comparison tests which show a faster startup and more

efficient utilization of memory and CPU when compared
with traditional unikernels. In [21] thought was considered

to evaluate isolation capabilities of unikernels as processes

when compared with traditional unikernels. The metrics

adopted for evaluation check how much of the host kernel

access is needed to function correctly and how much of the

kernel a unikernel could access.

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 8, ISSN No. 2455-2143, Pages 36-48
 Published Online December 2020 in IJEAST (http://www.ijeast.com)

45

 Figure 9: Unikernels as processes architecture

Results are reported as unikernel running as processes
requiring half as much access to kernel functions as standard

unikernels.

Whilst implementing unikernels as processes and omitting

the hypervisor sounds promising, the paper excludes how

supportable this would be. Unikernels are essentially black

box implementations and the ability to support and debug

would present CSP’s challenges. Removal of the hypervisor

in an IaaS public cloud would require a huge architecture

overhaul for CSP’s.

Implementing unikernels as processes and removing the

hypervisor would also not provide protection against side
channel attacks such as the Spectre and meltdown

vulnerability, which even in the Unikernel [15] or unikernel

as processes [21] architecture could be exploited.

The unikernel design is in direct conflict with the principle

of least privilege and prevents application developers from

running the standard user protection boundary due to the

single address space sharing, which takes an application

from the standard ring 3 and essentially moves it into ring 0.

The notion that a unikernel is more secure due to the limited

codebase whilst may be correct for the unikernels does not

factor in the Linux machine kernel vulnerabilities and the

attack surface this presents.

The reduced codebase in Unikernels was found in [20] to be

missing basic security features, such as an ability to update

whilst running and input validation failures leading to buffer

overflow vulnerabilities. Raising concerns that whilst the

hypervisor is removed additional vulnerabilities are

introduced, coupled with a lack of supportability from CSP’s

and a complete infrastructure overhaul requirement.

3.6 Survey summary

Figure 10 is used to better visualize the coverage of the

presented papers, and each solutions ability to address all the

known threats presented in section 2 in their entirety.

Figure 10: Table of all surveyed papers solutions and their

threat coverage.

A full table summarizing the work is shown in appendix A

at the end of this paper.

IV. FUTURE WORK

In this survey paper, we describe the known attacks against

a hypervisor and the relevance of this in the context of a

public IaaS environment.

Based on the survey’s findings the gaps and opportunities

and valuable future work could include:

The Inclusion of I/O encryption built into the hypervisor and

included as a standard among all vm’s, this coupled with an

ability to share memory pages. Research into slicing CPU

last level cache to ensure this cannot be used in a side

channel attack.

There are clear gaps in the full coverage of the proposed

solutions. Combining some of the proposed solutions into

hypervisors as standards to provide full coverage against the

known attacks presented in this paper.

Continued usage of machine learning techniques to future
proof against unknown attacks based on classification and

anomaly as seen in solution [17].

Transparency from CSP’s into the tenants that occupy a

physical host so that the decision and ultimately the risk is

offloaded to the cloud consumer to decide if they wish to

decline sharing with a particular tenant due to competitive

reasons or a conflict of interests.

V. CONCLUSION

Ensuring the security of cloud consumers is paramount.

Threats to hypervisor security exist in all environments that

leverage virtualization, including private clouds, however

this threat is exacerbated in multi-tenancy environments due

to the shared nature of the hosting infrastructure.

The prevalence of side channel attacks demonstrates that

isolation is not achieved at the hardware or hypervisor level.

Mechanisms that have been implemented to improve

performance across hardware and scalability across shared

Known

threat

addressed [13] [17] [25] [8] [10] [12] [7] [6] [23] [21]

Vm Escape √ √ √ √ √ √

DoS √ √ √

Hyper-Jacking √ √ √ √ √

Side Channel √ √

Paper Number

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 8, ISSN No. 2455-2143, Pages 36-48
 Published Online December 2020 in IJEAST (http://www.ijeast.com)

46

resources are often exploitable. The survey paper

demonstrates that there is often a trade-off between

performance and security.

For guaranteed security against attacks from malicious vm’s

cloud consumers should resort to avoiding co-residence.

Customers with strong privacy requirements could consider

the economical trade off against security and request

dedicated hosts in an IaaS environment or consider if the

workload is more suitable to a private cloud.

Solutions that aim to remove the hypervisor as a threat by

various methods of deprivileging, often introduce an

alternate to the hypervisor and in turn introduce an additional

attack vector.

Clear trends towards controlling the flow of privileged

instructions using variations of trap and emulate between the

vm and hypervisor were employed in the surveyed papers,

often at the expense of extra CPU cycles and ultimately

resulting in degraded performance for the host or vm’s.

As demonstrated in the literature review there is no single

solution that can address all known attacks within a virtual

environment. The hypervisor should not be trusted as a level
of isolation by cloud consumers, who should take effort to

further scrutinize CSP hypervisor security in more detail

when deciding to move workloads to an IaaS environment.

As with many items in Information Security an approach that

is layered and applies a defense in depth methodology,

leveraging a multitude of solutions will likely yield the best

results.

VI. REFERENCES

[1] Amit N., Tsafrir D., Schuster A., Ayoub A., and Shlomo

E.

(2015). Virtual CPU Validation. In Proceedings of the

25th Symposium on Operating Systems Principles ,

(Pg311–327). https://doi.org/10.1145/2815400.2815420

[2] Barker S., Wood T., Prashant S., and Sitaraman R.

(2012). An Empirical Study of Memory Sharing in

Virtual Machines.

https://www.usenix.org/system/files/conference/atc12/a
tc12-final226.pdf

[3] Brook Jon-Michael C. et al. (2019). CSA Releases New

Research - Top Threats to. Cloud Security Alliance:

https://cloudsecurityalliance.org/articles/csa-releases-

new-research-top-threats-to-cloud-computing-

egregious-eleven/

[4] Chang C., Wu J., and Liu P. (2011). An empirical study

on memory sharing of virtual machines for server

consolidation. In IEEE International Symposium on

Parallel and Distributed Processing with Applications,

ISPA 2011, (Pg 244-249).

[5] Chen L., Nhien-An Le-Khac and Takabi H. (2019).

Security, Privacy, and Digital Forensics in the Cloud.

Wiley, New York, NY.

[6] Dubrulle P., Sirdey R., Dore P., Aichouch M., and

Ohayon E.. (2015). Blind Hypervision To Protect Virtual

Machine Privacy Against Hypervisor Escape

Vulnerabilities

https://ieeexplore.ieee.org/document/7281938/

[7] Ishiguro K. and Kono K. (2018). Hardening Hypervisors

against Vulnerabilities in instruction emulation. DOI:

https://dl.acm.org/doi/10.1145/3193111.3193118

[8] Jin S., Seol J., Huh J., and Maeng S. (2015). Hardware-

Assisted Secure Resource Accounting under a

Vulnerable Hypervisor. DOI:

https://dl.acm.org/doi/10.1145/2731186.2731203

[9] Jin S., Ahn J., Cha S., and Huh J. (2011). Architectural

Support for Secure Virtualization under a Vulnerable

Hypervisor ACM:

https://jeongseob.github.io/papers/jin_micro11.pdf

[10] Keller E., Szefer J., Rexford J., and Lee R.B.
(2014). Eliminating the Hypervisor Attack Surface for a

More Secure Cloud https://eric-

keller.github.io/papers/2011/ekeller_nohype_ccs11.pdf

[11] King S. T. (2006). SubVirt: Implementing malware with

virtual machines. IEEE Symposium on Security and

Privacy 2006: (Pg 314-327)

http://web.eecs.umich.edu/~pmchen/papers/king06.pdf

[12] Li Shi-Wei, Koh John S., and Nieh J. (2019).

Protecting Cloud Virtual Machines from Hypervisor and

Host System Exploits
https://www.usenix.org/system/files/sec19-li-shih-

wei.pdf

[13] Lindeman J and Fischer M. (2018). On the

detection of applications in co-resident virtual machines

via a memory deduplication side-channel

https://dl.acm.org/doi/10.1145/3307624.3307628

https://doi.org/10.1145/2815400.2815420
https://www.usenix.org/system/files/conference/atc12/atc12-final226.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final226.pdf
https://cloudsecurityalliance.org/articles/csa-releases-new-research-top-threats-to-cloud-computing-egregious-eleven/
https://cloudsecurityalliance.org/articles/csa-releases-new-research-top-threats-to-cloud-computing-egregious-eleven/
https://cloudsecurityalliance.org/articles/csa-releases-new-research-top-threats-to-cloud-computing-egregious-eleven/
https://ieeexplore.ieee.org/document/7281938/
https://dl.acm.org/doi/10.1145/3193111.3193118
https://dl.acm.org/doi/10.1145/2731186.2731203
https://jeongseob.github.io/papers/jin_micro11.pdf
https://eric-keller.github.io/papers/2011/ekeller_nohype_ccs11.pdf
https://eric-keller.github.io/papers/2011/ekeller_nohype_ccs11.pdf
http://web.eecs.umich.edu/~pmchen/papers/king06.pdf
https://www.usenix.org/system/files/sec19-li-shih-wei.pdf
https://www.usenix.org/system/files/sec19-li-shih-wei.pdf
https://dl.acm.org/doi/10.1145/3307624.3307628

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 8, ISSN No. 2455-2143, Pages 36-48
 Published Online December 2020 in IJEAST (http://www.ijeast.com)

47

[14] Lindemann J. and Fischer M. (2018) Efficient

identification of applications in co-resident vms via a

memory side-channel. In ICT Systems Security and

Privacy Protection - IFIP TC 11 International

Conference (SEC) 2018, (Pg 245-259).

[15] Madhavapeddy A. et al. (2013). Unikernels:

Library Operating Systems for the Cloud. ASPLOS

Proceedings of the eighteenth international conference
on Architectural support for programming languages and

operating systems http://unikernel.org/files/2013-

asplos-mirage.pdf

[16] Mutlu O. and Kim Jeremie S. (2019). RowHammer:

A Retrospective. https://arxiv.org/pdf/1904.09724.pdf

[17] Paundu Ady Wahyudi, Fall D., Miyamoto D. and

Kadobayashi Y. (2018). Leveraging KVM Events to

Detect Cache-Based Side Channel Attacks in a

Virtualization Environment.

https://doi.org/10.1155/2018/4216240

[18] Ristenpart T., Tromer E., Shacham H., and Savage S.

(2009). Hey, You, Get Off of My Cloud: Exploring

Information Leakage in Third-Party Compute Clouds.

https://doi.org/10.1145/1653662.1653687

[19] Steinberg U. and Kauer B. (2010). NOVA: a micro

hypervisor-based secure virtualization architecture.

https://dl.acm.org/doi/10.1145/1755913.1755935

[20] Talbot J. et al. (2019). A Security Perspective on
Unikernels. https://arxiv.org/pdf/1911.06260.pdf

[21] Williams D., Koller R., Lucina, M. and Prakash N.

(2018). Unikernels as Processes. SoCC '18: Proceedings

of the ACM Symposium on Cloud Computing October

2018 DOI: https://doi.org/10.1145/3267809.3267845

[22] Zhang F., Chen J., Chen H., and Zang B. (2011).

CloudVisor: retrofitting protection of virtual machines

in multi-tenant cloud with nested virtualization.

https://dl.acm.org/doi/10.1145/2043556.2043576

[23] Zhang K., Liu W., Lin K., and Tu B. (2019). HyperPS:

A Hypervisor Monitoring Approach Based on Privilege

Separation.

https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00

141

[24] Zhang T., Zhang Y., and Lee R. B. (2014).

CloudRadar: A Real-Time Side-Channel Attack

Detection System in Clouds.

http://palms.ee.princeton.edu/system/files/cloud_detect.

pdf

[25] Zhang T and Lee R.B. (2017). Host-based DoS

Attacks and Defense in the Cloud..

http://palms.princeton.edu/system/files/cloud_destroy_

v6_0.pdf

http://unikernel.org/files/2013-asplos-mirage.pdf
http://unikernel.org/files/2013-asplos-mirage.pdf
https://arxiv.org/pdf/1904.09724.pdf
https://doi.org/10.1155/2018/4216240
https://doi.org/10.1145/1653662.1653687
https://dl.acm.org/doi/10.1145/1755913.1755935
https://arxiv.org/pdf/1911.06260.pdf
https://doi.org/10.1145/3267809.3267845
https://dl.acm.org/doi/10.1145/2043556.2043576
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00141
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00141
http://palms.ee.princeton.edu/system/files/cloud_detect.pdf
http://palms.ee.princeton.edu/system/files/cloud_detect.pdf
http://palms.princeton.edu/system/files/cloud_destroy_v6_0.pdf
http://palms.princeton.edu/system/files/cloud_destroy_v6_0.pdf

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 8, ISSN No. 2455-2143, Pages 36-48
 Published Online December 2020 in IJEAST (http://www.ijeast.com)

48

APPENDIX

A Full table summarizing literature review.

Threat addressed Solution Name and reference Solution Performance Overhead CSP Impact

Memory Deduplication Side Channel

On the Detection of Applications in Co-

Resident Virtual Disable Memory deduplication Large infrastructure changes required.

Memory obfuscation

Paper [13] Encrypt vm memory

Side channel cache

Leveraging KVM events to detect cache based

side channel attacks.

Monitoring using events in KVM leveraging

machine learning to detect known and unknown

side channel attacks.

Zero impact to host

performance, small impact

to guest

Process change for monitoring events and

responding to incidents.

Paper [17]

DoS

Host-based DoS Attacks and Defence in the

cloud 2017 Set of testing programs used No performance over head

Compatibility checks into real usage of

hypervisors

Able to monitor CPU, disk and network.

Paper [25]

 DoS Hardware-Assisted Secure Resource Leverage SMM internal hardware and a proxy.

High performance

degradation on high CPU

processes and workloads Infrastructure changes to faciliate

Deprivilege the hypervisor and control.

[Paper [8]

Vm escape and hyper jacking No Hype

Hypervisor removed from run time to reduce the

attack surface. Not measured No dynamic resourcing available

Direct vm ti CPU core mapping required

Paper [10]

Memory is also pre allocated. Benefits of

virtualization are lost

Vm escape HypSec

Retrofit a hypervisor, reduce the TCB. Split

between a privileged corevisor and a deprivileged

hypervisor known as hostvisor.

Up to 19% due to corevisor

trap and emulation.

Hypervisor changes required to retrofit

KVM

Hyper jacking

Paper [12]

Vm escape Fwinst - Hardening the hypervisor

FWInst Use a privileged instruction filter to handle

VM Exit from vm to hypervisor. Less than 2.5%

Maintenance and supportability of the

instruction filtered list.

DoS

Paper [7]

Vm escape hyper jacking Blind Hypervisor

Uses a master and a host. Requires additional

hardware components to encrypt and create non-

standard privilege instructions.

No check on performance

in paper.

Non-standard instructions. Master server

and additional specific hardware required

for encryption on the host server.

Paper [6]

Vm escape Hyper PS

Creates a new address space for a privilegd world,

known as HyperPS world. Uses hooks and a

gateto forward privileged instructions from the

hypervisor to HyperPS world.

1.09 times slower vm start-

up.

New virtual memory address space to

manage per host.

Hyper jacking

Up to 4% performance

overhead.

Paper [23]

Vm escape Unikernels as processes Complete removal of the Hypervisor

Improvements in

performance

Removal of all virtualisation, significant

challenges in supportability and complete

architecture overhaul

Hyperjacking

Running of Unikernels as processes using a

tender process that interacts direclty with the

Linux OS.

Paper [21]

Memory cost savings from

deduplication.

