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Abstract - Classical data are often compressed by using 

simple procedure which allows a string of data to take up 

less space during a computer’s memory. But, In Quantum 

Computing Data Compression is different because 

Quantum data are different and it's impossible to decide 

the frequencies of 1’s and 0’s in quantum information. The 

structure of the underlying autoencoder network is often 

chosen to represent the information on a smaller 

dimension, effectively compressing the input. Inspired by 

this concept, we introduce the model of a quantum 

autoencoder to perform similar tasks on quantum data. 

The quantum autoencoder is trained to compress a specific 

dataset of quantum states, where a classical compression 

algorithm cannot be employed. Using classical 

optimization algorithms, the parameters of the quantum 

autoencoder are trained. We show an example of an easy 

programmable circuit which will be trained as an efficient 

autoencoder with and without using dummy swap gates 

are implemented in IBMQ. 

 

Keywords: Quantum computing, Autoencoder, IBMQ, 

Qubit. 

I. INTRODUCTION 

 

Quantum technologies, ranging from quantum computing to 

quantum cryptography, have been found to have powerful 

applications for a modern society. Quantum computing is the 
utilization of collective properties of quantum states, such as 

superposition and entanglement, to perform computation. 

Superposition is the ability of a quantum system to be in 

multiple states at the same time until it is measured and 

Quantum entanglement is a physical phenomenon that occurs 

when a swarm of particles are generated, interact, or share 

spatial proximity in a way such that the quantum state of every 

particle of the group can't be described independently of the 

state of the others, including when the particles are separated by 

an outsized distance. The topic of quantum entanglement is at 

the heart of the inequality between classical and quantum 

physics entanglement is a primary feature of quantum 
mechanics lacking in classical mechanics. The devices that 

perform quantum computations are referred to as quantum 

computers. There are a number of types of quantum computers 

which includes the quantum circuit model, quantum Turing 

machine, adiabatic quantum computer, one-way quantum 

computer, and various quantum cellular automata. The most 

widely used model is that the quantum circuit, supported the 

quantum bit, or qubit is somewhat analogous to the bit in 

classical computation. 

 
For classical data processing, machine learning via an au- to 
encoder is one such tool for dimensional reduction [1-3].as well 
as having application in generative data models [4].A like the 
idea of classical auto encoders, a quantum autoencoder is a 
function whose parameters are improved across a training data 
such that given an (n+k)-qubit input x, the autoencoder attempts 
to reproduce x. Part of the process involves expressing the input 
data set using a fewer number of qubits (using n qubits out of 
n+k).This means that if the QAE is successfully trained, the  
circuit represents a compressed encoding of the input x, which 
may be useful to applications such as dimension reduction of 
quantum data. 
 
In this paper, we introduce the concept of a quantum 
autoencoder which is caused by this design for an input of n+k 
qubits. Because quantum physics is in a position to get patterns 
with properties (e.g., superposition and entanglement) that's 
beyond classical physics, a quantum computer should even be 
ready to recognize patterns that are beyond the potential of 
classical machine learning. Thus, the motivation for a quantum 
autoencoder is simple, It allows us to perform corresponding 
machine learning tasks for quantum systems. 
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Figure 1. a) A graphical representation of a 4-bit autoencoder 

with      a 1-bit latent space. The map encodes a 4-bit input (Green 

) into  a 1-bit intermediate state (White dots), after which the 

decoder attempts to reconstruct the input bits at the 

output(Blude dots). b) Circuit implementation of a 4-1-4 

quantum autoencoder. 

 

without exponentially costly classical memory, for instance, in 
dimension reduction of quantum data. In this work, we provide 

a simpler model which we believe more easily captures the 

essence of an autoencoder. 

 

 

A. QUANTUM COMPUTING PRELIMINARIES 

 

Qubits: Qubit is similar to classical bits 0 and 1 with 

a fundamental difference being that a qubit can be in a 

superposition state i.e.,a union of 0 and 1 at the same time. 

Qubit state is expressed with a key Notation. 

Quantum gates: Quantum gates are the operations that 

regulate the state of qubits and thus, perform computations. 

Quantum gates are represented by 2(pow(n)) *2(pow(n)) 

unitary matrices (n= number of qubits) and can work on a single 

qubit (e.g., X (NOT) gate) or on multiple qubits (e.g., 2-qubit 

CNOT gates). 

Basis gates and coupling constraints: A practical quantum 

computer normally supports a limited number of single and 

multi-qubit gates referred to as basis gates or native gates of the 

hardware. For example, IBM quantum computers have the 

following basis gates: u1, u2, u3, id (single-qubit), and CNOT 

(two-qubit). However, the quantum circuit may contain high- 

level gates that are not native to the hardware e.g., the Toffoli 

gate is not native to the IBM quantum computers. Therefore, 

the gates in a quantum circuit are decomposed into the basis 

gates before execution. Besides, the two-qubit operation 

(CNOT) is only permitted between the connected qubits. These 

restrictions in two-qubit operations in any target hardware are 

also known as coupling constraints. 

Compilation: Quantum circuit compilers e.g., Qiskit [5]. 

perform necessary modifications (e.g., insert SWAP gates) to 

the input circuits to satisfy coupling constraints of the 

hardware. Besides, compilers offer higher-level circuit 

optimization through single/multi-qubit gate cancellation, 

rotation merging, and gate-reordering [6]. Qiskit supports 

barrier between circuit partitions to limit these additional 

optimizations across circuit partitions [5]. 

 

B. TOTAL VARIATION DISTANCE (TVD) 

TVD is a widely used metric to measure the difference 

between two quantum states [7-8],We use TVD as a measure 

of the distance between the desired output state    of the 

original circuit and the corrupted output state  of  the 

obfuscated circuit. A higher TVD indicates functional 

corruption of the circuit. We use Total Variation Distance 

(TVD) as a measure of the difference between obfuscated 

output and original output. TVD is determined as ∑i(|xorig,i 

– xobfus,i| / shots). Here, xi is the count of ith element of a 

distribution. One of the challenges with this technique is the 

lack of knowledge of the correct output state for a realistic 

maximization problem that is solved using the quantum 

circuit. 

 

C. RELATED WORK 

The works in [9-10]assume that corrival will insert trojans 

in the reversible circuit before fabrication and send it back to 

the design companies. However, this attack model is not 

applicable to quantum circuits since basis gates are realized 

using microwave or laser pulse. The quantum circuit is never 

physically fabricated in gate-based model of quantum 

computing even though a quantum circuit is reversible. 

Binary data and test pattern-based detection assumptions 

made in the work does not apply to quantum circuits. 

Another work [11]assumes untrusted foundry that can 

locate ancillary and garbage lines in reversible circuit and can 

extract the circuit functionality. Dummy ancillary and 

garbage lines are added to the circuit which increases the 

ancillary and garbage lines post-synthesis. The attacker can 

identify only ancillary and garbage lines added post- 

synthesis, not the pre-synthesis. To bring down the overhead, 

reversible gates are added to the circuit judiciously to remove 

the “telltale” signs post-synthesis while keeping the logical 

functionality intact. The authors mentioned these approaches 

are only applicable for oracle-type or pure Boolean logic- 

based quantum circuits and not for quantum computing. This 

proposed approach is more generally applicable for any 

quantum circuits including circuits with and without ancillary 

and garbage lines whereas [11] crucially depends on the 

presence of the ancillary and garbage lines. Again, the work 

in [11] assumes the foundry and fabrication process of the 

reversible circuit cannot be trusted which is not directly 

applicable for gate-based quantum computing for reasons 

previously stated. In our work, we assume the compiler 

cannot be trusted. 

Another work [12] assumes that malicious adversary in 

quantum cloud will report incorrect qubit quality to force 

erroneous computation. Our adversarial model considers the 

compiler to be untrusted whereas the model in [12] considers 

quantum cloud to be malicious. Therefore, we are addressing 

vulnerability in a different layer in the quantum computing 
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stack. 

Another work [13] assumes an autoencoder is a 

supervised learning algorithm that learns that output data 

reproduce input data [13]. It is composed of a three-layer 

neural network of an input layer, a hidden layer, and an 

output layer, and the data of the hidden layer is a data 

representing the features of the input data. The quantum 

autoencoder is not a neural network but is calculated using 

quantum adiabatic algorithm, which is one of optimization 

algorithms. First, in order to verify the performance of a 

normal quantum autoencoder, they will verify whether the 

same data as the original data can be output when the 9pixel 

black-and-white image is used as the original data and the 

noise mixed data obtained by adding noise to the original 

data is used as the input data. 

Another work [14] assumes Classical autoencoders are neural 

networks that can learn efficient low dimensional 

representations of data in higher dimensional space. The duty 

of an autoencoder is, given an input x, is to map x to a lower 

dimensional point y such x can likely be recovered from y. The 

structure of the underlying autoencoder network is often chosen 

to represent the information on a smaller dimension, effectively 

compressing the input. 

They show an illustration of a simple programmable circuit that 

can be trained as an efficient autoencoder. They apply the 

model within the context of quantum simulation to compress 

ground states of the Hubbard model. Inspired by this concept, 

we initiate the model of a quantum autoencoder to perform 

similar tasks on quantum data. The quantum autoencoder is 

trained to compress a specific dataset of quantum states, where 

in a classical compression algorithm can't be employed. The 

criterion of the quantum autoencoder are trained using classical 

optimization  algorithms. 

 

II. QUANTUM AUTOENCODER MODEL 

 

In comparsion with the model of classical auto encoders, the 
quantum network features a graphical representation 

consisting of an interconnected group of nodes. In the graph 

of the quantum network, each node represents a qubit, with the 

primary layer of the network representing the input register 

and therefore the last layer representing the output register. In 

our representation, the sides connecting adjacent layers 

represent a unitary transformation from one layer to 

subsequent. Autoencoders, specially, shrink the space between 

the first and second layer, as depicted in Figure 1a. 

 

For a quantum circuit to embody an autoencoder network, the 
data contained in a number of the input nodes must be 

discarded after the initial encoding E. We imagine this takes 

place by tracing over the qubits representing these nodes (in 

Figure 1b, this is represented by a measurement on those 
qubits). New qubits (initialized to some reference state) are 

then prepared and used to implement the final decoding 

evolution, which is then compared to the initial state [17]. 

 
   Figure 2. Quantum Autoencoder Model 

   

We have an encoder circuit that encodes a particular state. The 
trick is that we measure some qubits that we call "Trash qubits", 

and we want the encoder circuit to produce those states that have 

zeroes on those trash qubits. This way if we apply a reversed 

autoencoder circuit, we will obtain the original quantum state at 

the output. To do this, we have Maximum sum of probabilities 

of states that have zeroes on the trash qubits. 

 

The learning task for a quantum autoencoder is to find uni taries 
which preserve the quantum information of the input through the 

smaller intermediate latent space [15]. To this end, it is 

important to quantify the deviation from the initial input state, 

|ψi in , to the output, ψi out .Here, we will use the expected for 

all the input states. 

 
A formal description of a quantum autoencoder follows: Let, {ψi 

in, ψi out}be an ensemble of pure states on n + k qubits, where 

subsystems A and B are made of n and k qubits, respectively. Let 

{U E} be a family of unitary operators acting on n + k qubits, 

some set of parameters defining a unitary quantum circuit. Also 

be some fixed pure reference state of k qubits. Using classical 
learning methods, we wish to find the unitary U(decoder) which 

maximizes the average fidelity. 

 

To implement the quantum autoencoder on a quantum computer 

we must define the form of the parametrized unitary, 

decomposing it into a quantum circuit suitable for optimization. 

It consists of layers composed of Controlled Z gates acting on 

alternating pairs of neighboring qubits which are preceded by 

Ry qubit rotations. After implementing, a final layer of Ry qubit 

gates is applied. Eventually, measurements on the desired 

discarded qubits have to be performed for the training.  
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Figure 3. A network comprising all the possible controlled 
general single-qubit rotations (denoted by Ry) and a control 

qubit in a qubit set, plus single qubit rotations at the beginning 

of 2:1:2 and 4:1:4 Quantum Autoencoder. 
 
It has been shown that, employing a circuit of exponential 

depth, one is usually able to perform a disentangling operation, 

but to perform this operation in constant or polynomial depth is 
tough , then classical heuristics are often used for finding 

quantum circuits that are as close to optimal as possible. Also, 

information as well as theoretic bounds are explored during this 

context before, both in the context of one-shot compression and 

one-shot decoupling. However, because the heuristics involved 

in choosing efficient-to-implement families of unitaries are 

largely adhoc, it is difficult to mention if these bounds are 

meaningful within the context of a quantum autoencoder. 
 
The objective of a quantum autoencoder is to store the quantum 

information of the input through the lesser latent space. 

Therefore, it is important to quantify how well the information 

is preserved. Note that the motivation for a quantum 

autoencoder is to be able to recognize patterns beyond the 

capabilities of a classical autoencoder, given the different 

properties of quantum mechanics. 

IMPLEMENTATION OF THE QUANTUM 

AUTOENCODER MODEL 

 

To excute the quantum autoencoder model on a quantum 

computer we must define the form of the unitary, U E and 

decompose it into a quantum circuit suitable for optimization. 
For the execution to be efficient, the number of parameters and 

the number of gates in the circuit should scale polynomially with 

the number of input qubits. This requirement immediately 

eliminates the possibility of using a (n + k) qubit general 

unitary as U E   due to the exponential scaling in the number of 

parameters needed to get them.  

 
One alternative for the generation of U(encoder) is to employ a 

programmable quantum circuit [15-16]. This type of circuit 

construction consists of a hard and fast network of gates, where 

a polynomial number of parameters associated to the gates i.e. 

rotation angles, constitute theta. The pattern defining the 

network of gates is considered a unit-cell. This unit-cell can 
ideally be repeated to extend the pliability of the model. For the 

numerical evaluation presented in this work. 

 

 
Figure 4. Implementation of Quantum Autoencoder Using 
IBMq 

 

 We begin with expressing each state using 4 qubits and try to 
compress the information to 1 qubit (implementing a 4-1-4 

quantum autoencoder). we use 7 total qubits for the 4-1-4 

autoencoder, using the last 3 qubits (qubits q6, q5 and q4)as 

refresh qubits. The unitary S represents the state preparation 

circuit, gates implemented to produce the input data set. There 

are 3 refresh qubits used to reconstruct the data from the smaller 
latent space. The unitary U represents the training circuit that will 

be responsible for representing the data set employing a fewer 

number of qubits, during this case employing a single qubit. The 

tilde symbol above the daggered operations indicates that the 

qubit indexing has been adjusted such that q0=q6, q1=q5, q2=q4 

and q3=q3. So, qubit q3 is to be the latent space qubit, or qubit 

to hold the compressed information. Using the circuit structure 

above (applying S and U then effectively un-applying S and U) 

we train the autoencoder by propagating the QAE circuit with 

proposed parameters and counting the number of times the 

measurements of the refresh qubits and the latent space qubits 

(q3 to q6) are 0000 in Figure 4. 
 

This circuit contains a unit-cell having all the possible 

controlled one-qubit rotations among a group of qubits, 

complemented with a group of single qubit rotations at the start 
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and at the end of the unit-cell, as shown in for the four-qubit 

case. We get thinking about the rotations controlled by the 

primary qubit, followed by the rotations controlled by the 

second qubit and so on. Accordingly, our model comprises 

2n(n 1)+4n training parameters per unit cell and can be 

implemented in state of the art quantum hardware using the 

standard decomposition of controlled unitaries into two CNOT 

gates and single-qubit rotations [17]. This model is also 

general and can be altered by adding constraints to the 
parameters. For instance, one could consider the initial and 

final layers of rotations to be all an equivalent. 
In the current version of Quantum Compress, there are two main 

training schemes: 

1. Halfway training - during this, we implement only the 

state preparation followed by the training circuit and 

count the probability of measure all 0's on the "trash" 
qubits (i.e. input qubits that aren't the latent space 

qubits). 

2. Full training - In this scheme, we implement the entire 

circuit (state preparation, training, un-training, un-state 

preparation) and count the probability of measuring all 

0's on the "output" qubits. There are two possible sub-

strategies: 

2a. Full training with reset: With the RESET feature in pyQuil, 

we reset the input qubits such that these qubits are the refresh 

qubits in the latter half of the QAE circuit. In total, this method 

requires n_{in} qubits. 

2b. Full training without reset: Without the reset feature, we 

present new qubits for the refresh qubits. Therefore, this method 
requires 2 * n_{in} - n_{latent} qubits. 

III. IMPLEMENTATION OF QUANTUM   

AUTOENCODER MODEL USING DUMMY 
SWAP GATES 

In this section, we provide outline of the proposed procedure. 

First, we describe various features of the dummy SWAP 

locations using examples. Next, we explain various approaches 

to combine them to distill effective metrics. 

 

A. OVERVIEW 

Our main objective is to introduce dummy gates in a quantum 

circuit before it is compiled. This insertion should be done 

strategically to obtain a good TVD from the original circuit. The 

approach is to completely analyze all possible positions to insert 

dummy gates, the corresponding total variance distance values 

and identify their features. Once the features for a particular 
SWAP gates location and corresponding total variance distance 

is understood, a guided task can be developed to insert dummy 

gates for a fresh circuit to maximize corruption of the circuit. 

For the complete search based analysis, a quantum circuit is 

selected, and two qubit SWAP gates are inserted at locations 

while the circuit depth is unchanged. 

To do this, first the circuit is divided into slices. Inside each 

slice, any two quantum gates are operated using different set of 

qubits which means the quantum gates can operate in parallel. 

Hence, assuming n free qubits in a slice, there are (n/2) possible 

ways the dummy 2-qubit SWAP gates are inserted into the slice 

if n >=2  (even on non-neighbouring qubits).  To study suitable 

positions for the dummy gates, we insert one dummy SWAP gate 

at each of the possible positions of the standard circuits. 

 

B. PROPOSED WORK 

Step – 1: First step is to identify various features that can 

distinguish the dummy gate locations from each other in      a 

given circuit. Some examples of these features include number 

of control gates on the qubits and depth of the dummy SWAP 

gate from output. These features are used individually or in 

combination to determine the best metric for guided selection of 

SWAP gate location for future unseen circuits. The features are 

explained below. 

 

1) Depth of the dummy gate from primary outputs 

We use this feature to calculate the number of slices present 

between the considered position and the output. It quantifies the 

influence of the SWAP gate on the output of the circuit. For 

example, the depths of SWAP positions 1, 2, and 4 are 7, and 6 

respectively. 

2) Measuring qubit 

This feature checks if the two qubits associated with the dummy 

SWAP gate are being measured eventually or not.  If both of 

these qubits are measured, then it is likely that the SWAP gate 

will impact the output significantly. The impact reduces if only 

one of the qubits is measured. For example, SWAP–6 involves 1 

measured qubit (Q2; qubits in the figure are indexed from Q0 to 

Q1 from the top), SWAP–5 involves 2 measured qubits (Q0 and 

Q4), and SWAP–1 involves 0 measured qubits. 

 
3) Number of times the qubit is used as control qubit 

This feature counts the number of times the qubit involved in the 

dummy SWAP gate is used as control qubit in the circuit. This 

intuitively states that if this qubit is impacted, the other 

directly/indirectly controlled qubits will be affected as well. 

 

4) Number of control qubits in the paths 

This feature counts the number of control qubits that can be tracked 

in the paths from each qubit involved in the dummy gate (source) 

till one of the measured output qubits has been reached 

(destination). Multiple paths can be tracked from the two qubits in 

a dummy gate to one of the destinations measured qubit. The 
number of these control gates are added together for each dummy 

gate position. Considering SWAP–6 in Fig. 5. Two paths (one 

“top” and another “bottom”) stemming from 2 qubits in the SWAP 

gate are shown. At the control qubit the path splits into two 

direction.  One proceeds to the next time-step (if the next time-step 

has gates in it) and another takes a 90◦ bend towards the target 

qubit. For SWAP– 6, the top path splits into two. The split path 

moving to the next time-step has no gates in that time-step. Another 
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split path takes the 90 bend and continues towards the target qubit, 

and in the process encounters another control qubit. Thus, the top 

path from SWAP–12 has 2 control qubits. Likewise, the bottom 

encounters 1 control qubit during traversal. However, that control 

qubit is already considered during the “top” path traversal, and 

hence, not counted again. 

 

5) Constant qubit: 

Some circuits have constant values for some qubits e.g., 1 or 

0. These constants affect the output especially for some input 

combinations and when the dummy gate involves one constant 

qubit. They get swapped and as a result, affect the other gates, 

eventually corrupting the output. Hence whether the dummy 

gate has a constant qubit involved is used as a feature. 

Step – 2: After collecting all the features described above, 

we focus on using them to develop an effective metric. To begin 

with, the dummy gate depth (or number of control qubit) feature 

is used one by one to select the dummy gate location. However, 

these basic metrics produce multiple positions with the same 

feature values. The TVD of these positions are averaged and 

compared with the average and the best TVD of each of the 

benchmark circuit the average across all benchmarks for 2 

features namely, depth and number of control qubits. It can be 

noted that each of these features exhibit strong correlation 

towards output TVD. Further, some features might maximize 

the TVD more than others. Since these features produce 

multiple positions, we use their combination to refine a single 

best SWAP location for each circuit. If we consider a single 

feature, the difference from best TVD is relatively high. 

Metric-1 and Metric-2: In the first pass, we remove 

SWAP positions with 0 depth and 0 measuring qubits 

involved. These cases are SWAP gates at primary output 

involving qubits that are not measured. The corresponding 

Total Variance Distances authenticate to the fact that such 

SWAP positions are in- effective for obfuscation and can be 

safely removed from consideration. After this pruning, we 

obtain a reduced set of SWAPs. We compute score for each 

position to select candidate SWAP location. Metric-1 picks 

the SWAP with highest score and Metric-2 picks the one 

with lowest score 

  Metric-3 and Metric-4: In the second pass (i.e., with after 

SWAP list reduction employed in Metric-1/2), we remove 

SWAP(s) not involving any constant qubits to further sanitize 

the SWAP list. Metrics-3 and 4 are based on the highest and 

lowest scores, respectively. 

Metric-5 and Metric-6: Finally, we remove SWAP lo- 

cations involving 0 control gates in the path to a measured 

qubit. The potential impact of the SWAP on the output is 

minimum without any control operations in the path. Thus, 

such SWAP locations are not ideal for obfuscation. Metrics-

5 and 6 are based on the highest and lowest scores. 

In denser circuits, higher depth means that the SWAP gate 

is inserted earlier in the circuit, and higher number of control 

qubits both add up to give highest score. Also note that, 

lowest score either indicates lower depth implying that the 

SWAP gate is located closer to the measured qubits and/or 

that the number of control qubits is less and can directly 

impact the output TVD significantly. We consider both 

highest and lowest scores in our metrics. However, we find 

that the highest score-based metric (Metric 5) performs better 

on a greater number of circuits. Therefore, this can be the 

metric of choice. 

C. CASE STUDY- 4:1:4 AUTOENCODER CIRCUIT 

 
The 4:1:4 Quantum autoencoder circuit (Fig. 5) is divided 

into 5 slices between barriers. For each experiment, one 

SWAP gate at a time is inserted in one of the 22 possible 

locations overlapping with the other gates in the slices. After 

compilation and simulation for individual SWAP gate 

positions, it has been categorised that the average TVD. 

 
 

Figure 5: Circuit diagram of 4:1:4 Quantum autoencoder with 

annotated features implemented in IBMQ. For example, SWAP 

gate position 6 has depth = 4, number of control qubits = 7, 

measured or not = 1, constant qubits involved or not = 1, and 

number of control qubits in paths = 2, as shown. The path shown 

in blue, starts from each qubit of SWAP gate 6, and is continued 

in links by the control qubits, ending in target qubit that is 

measured. Doing this for both qubits in SWAP gate 6, we get 2 

control qubits in the paths.  

 

However, the final metric should be generic i.e., it should 

outperform the average TVD for most of the circuit and should 
be as close to best TVD as possible. This analysis shows that 

metric 3 meets this requirement even though it performs badly 

for this particular example circuit. 

 

IV. DISCUSSION 

We have introduced a general model for a quantum autoencoder 
a quantum circuit augmented with learning via classical 

optimization and have shown that it is capable of learning a 

single circuit which can ease compression of quantum data, 

particularly in the factors of quantum simulations. We imagine 

that the model can have other applications, such as compression 

protocols for quantum communication, error- correcting circuits, 

or perhaps to solve particular problems directly. An application 

for quantum autoencoders is state preparation. Once a quantum 

autoencoder has been trained to compress a specific set of states, 

the decompression unitary(U†) can be used to generate states 
similar to those originally used for training. This is achieved by 

preparing a state of the form ΨI a and evolving it under U†, 

where ΨI has the size of the latent space and a is the reference 

state used for training. 
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In the specification of the autoencoder, we define the input 

states to be an group of pure states, and therefore the evolution 

of those states to be unitary [18-21]. The most generalized 

picture of the autoencoder, however, would leave inputs to be 

ensembles of mixed states and therefore the set to be a group of 

quantum channels. In the case of mixed state inputs, we remark 

that this formulation can in theory be captured by our model 

already. 
 

It is questioned whether there are any obvious limitations to the 

quantum autoencoder circuit. One such  consideration is that the 

von-Neumann entropy [22] of the density operator representing 

the ensemble ψi in, ψi out restricts the number of qubits to which 

it can be noiselessly compressed. However, finding the entropy 

of this density operator is not insignificant – in fact, given a 

circuit that constructs a density operator ρ, in general it is known 

that even estimating the entropy of ρ is QSZK complete [23]. 

This then opens the possibility for quantum autoencoders to 

efficiently give some approximate of the entropy of a density 
operator. 

 

1) Consideration for multiple dummy gates 

The addition of multiple dummy SWAP gates can be considered 
to obtain a higher Total Variance Distance and to increase the 

adversarial effort further. However, the overhead will also be 

higher. This feature can be investigated in future research. 

 

2) Impact of dummy gates on coherence 

SWAP gates are only inserted in the compilation phase. Before 
executing the circuit on the real hardware, the dummy gates will 

be removed. The device executable version of the circuit will 

not contain any additional gates. Therefore, the proposed 

approach does not affect coherence during execution but will 

secure the circuit during compilation on third-party compilers. 

 
3) Consideration for non-arithmetic circuit 

Non-arithmetic quantum circuits are often studied in future 
research to spot other metrics which will be used for 

obfuscation. These circuits will provide a far better 

understanding since measurement in X-basis and Hadamard 

basis don't seem to be commonly covered in arithmetic circuits. 

 

4) Recognition and removal of added extra logic 

After compilation, the designer needs to identify and remove 

the extra dummy gates to retrieve the original circuit 

functionality. This could pose a challenge since the dummy 

SWAP gate could be optimized with other gates in the circuit, 

removed during compilation if a reverse SWAP is required to 

meet the coupling limitation of the hardware and mixed up 

with other gates and could be difficult to identify due to change 

in circuit depth and other add SWAP gates. As an initial 

solution, we employed the barriers to enclose the dummy 

SWAP gate. This prevents the compiler from optimizing the 

SWAP gate with other gates. Although the added barrier could 

lead to slight degradation in optimization, it provides an easy 

mechanism to the designer to identify and remove the dummy 

SWAP gate post compilation. Note that the added barrier may 

provide clue to the adversary. One can obfuscate such clues by 

adding dummy barriers in the design. 
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TABLE 1: Design overhead in terms of circuit depth, number 

of basis operations, and compilation time for two benchmark 

circuits with the Qiskit compiler backend. 

An additional topic of interest for any quantum computing 

model is the computational complication exhibited by the 

device. For our construction, it's clear that any complexity result 
would be dependent upon the family of one that is chosen for the 

learning to be optimized over. As the training itself is dependent 

on classical optimization algorithms this further obfuscates 

general statements regarding the complexity of the model. 

 

 

V. EXPERIMENTAL RESULTS 

For the training set, six states were selected. The circuit in 

Fig. 4 is run for each of the training states, calculated the 

probability of getting measurement outcome 0000, and 

averaged the probabilities over the training set (and negated) 

to determine the loss. We then used the parameters to get the 

optimal or near-optimal parameters for the training circuit. 

For the demo, we chose an easy training circuit containing a 

couple of single-qubit rotation gates (with two tunable 

parameters) alongside a few CNOT gates. Also, we 

implemented Quantum Autoencoders on IBMQ, We get a 

100% probability on state vectors (2:1:2 QAE). 

It is noted that one can perform comprehensive simulation in 

order to find the best positions to insert the dummy gates. 

However, simulation is prohibitively expensive for quantum 

circuits with large number of qubits. Moreover, the 

application loses any perceived quantum advantage if it can 

be classically simulated. One of the prime objectives of this 

article is to devise a scalable approach for quantum strength 

comparable to the exhaustive approach. In this Section, we 

show results on small quantum circuit benchmarks to 

demonstrate the benefit of the proposed work. we first 
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provide a brief description of our experimental/simulation 

framework, and benchmark. 

Evaluation Framework and Benchmarks: We use the 

open-source quantum software development kit from IBM 

(Qiskit) [24]. For our simulations. The software runs locally 

on an Intel Core i5 CPU clocked at 2.40GHz machine. The 

default compiler backend in Qiskit is used f o r  compilation. 

A Python-based wrapper is built around Qiskit to 

accommodate the proposed on the input circuits to the 

compiler backend. 

In IBMQ or Quantum programming studio,By 

implementing 4:1:4 Quantum autonencoder without using 

dummy swap gates we get the more state vectors and less 

Probabilities but while implementing 4:1:4 Quantum 

autoencoder with using dummy swap gates we get the less 

state vectors and more Probabilities shown in fig 6. 

 

 
Figure 6. State vectors and probabilities of 4:1:4 Quantum 

autoencoder with dummy swap gates. 
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