
 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 4, Issue 11, ISSN No. 2455-2143, Pages 302-304
 Published Online March 2020 in IJEAST (http://www.ijeast.com)

302

AN EFFICIENT METHOD TO REDUCE LZW

ALGORITHM OUPUT CODE LENGTH
Srinivasa Rao Namburi, P A V Krishna Rao, Praveen Kumar Muvva, Suresh Kumar K

Asst. Prof Dept of IT

Bapatla Engineering College, AP, India

V Naveen Kumar

Dept of CSE

Bapatla Engineering College, AP, India

Abstract: Text compression techniques are essential

techniques to use for data transmission from one location

to another location and also used to keep the more data.

LZW is an lossless text compression technique to using by

most of people. This paper proposes to decrease the length

of the LZW algorithm output, thus we can compress more

data at a time.

Keywords: Code Length, LZW, Text data Compression

I. INTRODUCTION

LZW is a lossless compression algorithm [7] which gives best

text data compression. This paper focus on decrease the

output code length of the LZW algorithm by improving

existing LZW algorithm. Concentrate mainly on text data

compression [5] since text plays a crucial role in the present

digital data world.

LZW is a dictionary based algorithm [8]. We are compress

and decompress the file using dictionary. LZW dictionary
contains strings and codes. LZW get a 8 bit input character

and produce the compressed bit is in size of 12 bits.

Approach is reduce the size of compressed character size in

bitwise.

II. LITERATURE SURVEY

The important criterion for compression evaluation is

compression ratio which is expected to be raised. The data

compression is of two types: Lossy and lossless [6]. Lossy

[10] is preferable for audio, video, and images since it is

bearable of having low quality. Whereas text compressions
strongly recommend lossless because nobody wants to have

some meaningless or even sometimes horrible messages

instead of correct ones.

2.1 Lossless verses Lossy compression

1. The advantage of lossy [9] methods over lossless methods

[1] is that in some cases a lossy method can produce a much

2. Smaller compressed file than any known lossless method,

while still meeting the requirements of the application.

3. Lossless compression schemes are reversible so that the

original data can be reconstructed, while lossy schemes accept

some loss of data in order to achieve higher compression.

2.2 LZW Data Compression

Lempel-Ziv-Welch (LZW [1]) is a universal lossless data

compression algorithm created by Abraham Lempel, Jacob

Ziv, and Terry Welch.Lempel- Ziv-Weltch (LZW) is one of

the powerful existing compression algorithms. It finds in

many important applications like win zip, 7zip and etc.

1. LZW is a fixed length coding algorithm. Uses 12bit

unsigned codes. First 256 codes are the entire ASCII

character set. Lateral entries in the LZW dictionary are

strings and codes.

2. Every LZW code word is a reference to a string in the
dictionary.

3. LZW compression[12] replaces strings of characters

with single codes. It does not do any analysis of the

incoming text. Instead, it just adds every new string of

characters it sees to a table of strings. Compression

occurs when a single code is output instead of a

string of characters.

Basic idea [1]

(1) Replaces strings of characters with single integer codes.

(2) A table of string/code pairs is built as the compression

algorithm reads the input file.

(3) The table is reconstructed as the decompression algorithm

reads.

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 4, Issue 11, ISSN No. 2455-2143, Pages 302-304
 Published Online March 2020 in IJEAST (http://www.ijeast.com)

303

2.3 Compression

The LZW compression algorithm [1] in its simplest form is

shown below. A quick examination of the algorithm shows
that LZW is always trying to output codes for strings that are

already known. And each time a new code is output, a new

string is added to the string table. The output code size is 12

bits for character.

Algorithm 1: LZW Compression Algorithm

1: if (STR = get input character) is not EOF then

2: while there are still input characters do

3: CHAR = get input character

4: if STR+CHAR is in the string table then

5: STR = STR+CHAR
6: else

7: output the code for STR

8: add STR+CHAR to the string table

9: STR = CHAR

10: end if

11: end while

12: Output the Code for STR

13: end if

2.4 Decompression

The companion algorithm for compression is the
decompression algorithm [1].It needs to be able to take the

stream of codes output from the compression algorithm, and

use them to exactly recreate the input stream.

The table can be built exactly as it was during compression,

using the input stream as data. This is possible because the

compression algorithm always outputs the STRING and

CHARACTER components of a code before it uses it in the

output stream. This means that the compressed data is not

burdened with carrying a large string translation table.

Algorithm 2: LZW Decompression Algorithm

1: Read OC = OLD CODE
2: if OC is not EOF then

3: output OC
4: CHARACTER = OC

5: while there are still input characters do

6: Read NC = NEW CODE

7: if NC is in not DICTIONARY then

8: STRING = get translation of OC

9: STRING = STRING + CHARACTER

10: else

11: STRING = get translation of NC

12: end if

13: output STRING

14: CHARACTER = first character in STRING
15: add OC + CHARACTER into the DICTIONARY

16: OC = NC

17: end while

18: Output string for code

19: end if

III. DESIGN

3.1 Design Approach

3.1.1 Providing options for selection of code length

Our approach facilitates the user to select the code length

based on file size.

For example:

1. 9bit: small files.

2. 12bit: medium files.

3.14bit: large files.

As code length decreases file we can obtain better text
compression.

3.2 Modified LZW Compression Algorithm [11]

Algorithm3: Modified LZW Compression Algorithm

1: DEFINE CODE LENGTH

2: if (STR = get input character) = EOF then

3: while there are still input characters do

4: CHAR = get input character

5: if STR+CHAR is in the String table then

6: STR = STR+CHAR
9: else

10: output code for STR

11: add STR + CHAR into the String table

12: STR = CHAR

13: end if

14: end while

15: Output the code for STR

16: end if

3.3 Modified LZW Decompression Algorithm

Algorithm4: Modified LZW Decompression Algorithm

1: DEFINE CODE LENGTH

2: Read OC = OLD CODE

3: if OC is not EOF then

4: OC = get translation of OC

5: output OC
6: CHARACTER = OC

7: while there are still input characters do

8: Read NC = NEW CODE

9: if NC is in not DICTIONARY then

10: STRING = get translation of OC

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 4, Issue 11, ISSN No. 2455-2143, Pages 302-304
 Published Online March 2020 in IJEAST (http://www.ijeast.com)

304

11: STRING = STRING + CHARACTER

12: else

13: STRING = get translation of NC

14: end if
15: output STRING

16: CHARACTER = first character in STRING

17: add OC + CHARACTER into the DICTIONARY

18: OC = NC

19: end while

20: Output string for code

21: end if

IV. IMPLEMENTATION

4.1 Providing options for selection of code length

As our approach lets the user to select the code length[4],

compression ratio increases for smaller files. For example if

code length 9 is sufficient for a smaller file then each

character can be replaced by 9 bits, which is 3 less than 12

(original LZW code length). The file contains more text this

approach can reduce more bits.

 The following table of results were obtained by experimental

the algorithm on different file size with different input code

lengths.

Original file

size

Compressed file size

(Old LZW)

Compressed file size

(New LZW)

2 Kb 1.37 Kb 1.24 Kb

3 Kb 1.96 Kb 1.87 Kb

4 Kb 2.62 Kb 2.56 Kb

Fig 4.1 Providing options for selection of code length

compression

V. CONCLUSION & FUTURE WORK

An Improved LZW algorithm is presented in this report. An

evaluation result states that this modified LZW algorithm
performs better compression than the existing LZW algorithm

in terms of file size in Kilo Bites.

The suggested future work is to reduce the size of the

character output of the LZW and make better use of the

dictionary.

VI. REFERENCES

[1] David Solomon. (2004). Data compression: The

 Complete reference book, Pub-SV 3rd Edition.

[2] Michael Dipper stein Lempel-Ziv-Welch (LZW)
 Encoding Discussion.

 http://michael.dipperstein.com/lzw/.

[3] Ms. Agrawal Arohi K, Prof. V. S. Kulkarn (2014), FPGA

 Based Implementation of Data Compression using

 Dictionary based “LZW”Algorithm, IJIREECE, Vol. 2,

 Issue 4, April

[4] Srinivasa Rao N, Praveen Kumar. (2020), A New

 Approach to Increase LZW Algorithm Compression

 Ratio, IJEAST, Vol. 4, Issue 10,(pp: 141-144).

[5] J. Abel, W. Teahan. (2005), Universal text preprocessing

 for data compression, IEEE Trans. Comput., 54 (2005),

 pp. 497- 507.
[6] Ezhilarasu P, Karthik Kumar P (2015) ,LZW Lossless

 Text Data Compression Algorithm – A Review

 International Journal Of Computer Science &

 Engineering Technology (IJCSET), Vol. 6.

[7] H. Amri, A. Khalfallah, M. Gargouri, N. Nebhani, J.-C.

Lapayre, M.-S. Bouhlel (2017) Medical image

compression approach based on image resizing, digital

watermarking and lossless compression, J. Signal

Process. Syst., 87,(pp. 203-214).

[8] Simrandeep kaur, V.Sulochana Verma (2012), Design

 And Implementation of LZW Data Compression
 Algorithm, International Journal of Information Sciences

 and Techniques (IJIST) Vol.2, No.4, July.

 [9] Sawsan A. Abu Taleb , Hossam M.J. Musafa , Asma’a

 M.Khtoom(2010), Improving LZW Image Compression,

 European Journal of Scientific Research 1450-216X

 Vol.44 No.3, (pp.502-509).

[10] Evon Abu-Taieh1, Issam AlHadid (2018), A New

 Lossless Compression Algorithm, Modern Applied

 Science, Canadian Center of Science and Education,

 Vol. 12, No. 11.

[11] Li & Drew (2003) , Fundamentals of Multimedia:

 Lossless Compression Algorithms, @ Prentice Hall .
[12] Simrandeep kaur, V.Sulochana Verma (2012), Design

 and Implementation of LZW Data Compression

 Algorithm, (IJIST) Vol.2, No.4, July.

1 2 3

2

3

4

1
.3

7 1.
96

2
.6

2

1
.2

4 1
.8

7 2.
56

Original file size CS (Old LZW) CS (New LZW)

