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 Abstract— In this paper, we present an efficient direct 

computational algorithm for the numerical solution of 

system of Fredholm integrodifferential equations of the 

second kind. The proposed algorithm was based on direct 

computational technique of solving Fredholm 

integrodifferential equations. This approach is simple and 

computationally very attractive. Finally, illustrative 

examples and also the application of the proposed method to 

first order system of Fredholm integrodifferential show the 

validity and applicability of the technique. 
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I. INTRODUCTION 

Mathematical modeling of real-life phenomena usually results in 
integral and integro-differential equations (IDE), these equations 
arise in engineering, biological models and chemical kinetics 
(Kythe and Puri 2002). Integro-differential equations is an 
equation that the unknown function appears under the sign of 
integration and it also contains the derivatives of the unknown 
function. It can be classified into Fredholm equations and 
Volterra equations. The upper bound of the region for integral 
part of Volterra type is variable while it is a fixed number for 
that of Fredholm type. Fredholm integrodiferential equations 
play an important role in many fields such as applied 
mathematics: engineering, economics, modeling science, 
physical chemistry and oscillation theory and airfoil theory. 
However, in this paper, we focus on system of Fredholm integro-
differential of the form: 

 

{
 
 
 

 
 
 
𝑢(𝑖)(𝑥) = 𝑔1(𝑥) +∫(𝐾1(𝑥, 𝑡)𝑢(𝑡) + 𝐾1̂(𝑥, 𝑡)𝑣(𝑡))𝑑𝑡

𝑏

𝑎

𝑣(𝑖)(𝑥) = 𝑔2(𝑥) + ∫(𝐾2(𝑥, 𝑡)𝑢(𝑡) + 𝐾2̂(𝑥, 𝑡)𝑣(𝑡)) 𝑑𝑡

𝑏

𝑎

𝑥, 𝑡 ∈ [𝑎, 𝑏]          

  (1) 

  

      

Subject to initial conditions 

{
𝑢(𝑥0) = 𝜏1
𝑣(𝑥0) = 𝜏2

                                                                    (2) 

 

Where g1(x) and g2(x)  are known functions, 

𝜏1, 𝜏2 are constants, K1(x, t), K1̂(x, t), K2(x, t), K2̂(x, t) are 
known kernels and  u(x),  𝑣(𝑥)  are unknown that must be 
determined. The theory and application of integro-differential 
equations are important roles in engineering and applied 
sciences. Thus, numerous works have been focusing on the 
development of more advanced and efficient methods for 
solving integrodiferential equations such as, (Atkinson 2011) 
proposed numerical approach of integral equations of  the  
Second  Kind, (Ayad 2011) proposed spline approximation for 
first order Fredholm Integro-differential equation, (Brunner 
2004) applied Collocation method for volterra integral and 
related functional equations,( Lakestani  et  al., 2006) proposed 
and applied semi-orthogonal spline wavelets approximation for 
Fredholm Integro –differential equations. Also in  (Brunner 
2004; Rabbani et  al., 2007) some  of  results  about  solving  
Volterra  integral  equations  are  presented.  Semi orthogonal  
spline  wavelets  and  spline  are  used  for  solving  integro-
differential  equation respectively in (Ayad 1996), numerical 
solution of first-order linear Fredholm integro-differential 
equations using conjugate gradient method in (Elayaraja 2009; 
Dehghan 2008) proposed Chebyshev finite difference method 
for Fredholm integro-diferential equation,(Lackiewicz et  al.,  
2006) Numerical solution of a Fredholm integro-diferential 
equation modelling neural network and in (Lakestani et  al., 
2006) Semi orthogonal spline wavelets approximation for 
Fredholm integrodiferential equations was developed. 

 
The purpose of this paper is to employ the direct computational 
method discussed in (Wazwaz 2011) and formulate a suitable 
algorithm for the numerical solution of system of Fredholm 
integro-differential equations. Consequently, the algorithms was 
tested for four examples and results show that the formulated 
approach was easy, accurate and rapidly converges to the exact 

solution. 
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II. DIRECT COMPUTATION METHOD (DCM) 
 

The DCM is a traditional method that is commonly used to handle 
many Fredholm integral equations (Delves 1974; Kanwal 1971). 
The DCM transform a FIDE to an ordinary differential equation 
(ODE). Then the solution of the obtained ODE is transformed to 
an algebraic system of equations. By calculating the solutions of 
the algebraic system of equations and substituting into the solution 

of the ODE. 

 

Consider equation (1) and define the kernel function as follow 

 

{
 
 
 
 
 

 
 
 
 
 K1(x, t) =∑𝑓𝑘(𝑥)𝑚𝑘(𝑡)

𝑛

𝑘=1

K1̂(x, t) =∑ fk̂(𝑥)mk̂(𝑡)

𝑛

𝑘=1

K2(x, t) =∑𝑒𝑘(𝑥)ℎ𝑘(𝑡)

𝑛

𝑘=1

  

K2̂(x, t) =∑ek̂(𝑥)hk̂(𝑡)

𝑛

𝑘=1

                            (3) 

 
Substitute (3) into the system of Fredholm integro-differential 

equations (1) to obtain 

 

{
 
 
 
 
 

 
 
 
 
 𝑢(𝑖)(𝑥) = 𝑔1(𝑥) +∑𝑓𝑘(𝑥)

𝑛

𝑘=1

+∫ 𝑚𝑘(𝑡)𝑢(𝑡)𝑑𝑡
𝑏

𝑎

+

∑fk̂(𝑥)∫ mk̂(𝑡)
𝑏

𝑎

𝑛

𝑘=1

𝑣(𝑡)𝑑𝑡

𝑣(𝑖)(𝑥) = 𝑔2(𝑥) +∑𝑒𝑘(𝑥)

𝑛

𝑘=1

∫ℎ𝑘(𝑡)𝑢(𝑡)𝑑𝑡 +

𝑏

𝑎

∑ek̂(𝑥)∫ hk̂(𝑡)
𝑏

𝑎

𝑛

𝑘=1

𝑣(𝑡)𝑑𝑡

(4)  

Integrate at the right side depends only on the variable t with 
constant limits of integration for t. Implies that each integral is 

equivalent to a constant. Thus, equation (4) becomes 

 

 

{
 
 

 
 𝑢(𝑖)(𝑥) = 𝑔1(𝑥) + 𝜇1𝑓1(𝑥) + 𝜇2𝑓2(𝑥)

+⋯𝜇𝑛𝑓𝑛(𝑥) + 𝛾1f1̂(𝑥) + 𝛾2f2̂(𝑥) +⋯𝛾𝑛fn̂(𝑥)

𝑣(𝑖)(𝑥) = 𝑔2(𝑥) + 𝛿1𝑒1(𝑥) + 𝛿2𝑒2(𝑥)

+⋯𝛿𝑛𝑒𝑛(𝑥) + 𝜌1e1̂(𝑥) + 𝜌2e2̂(𝑥) +⋯𝜌𝑛en̂(𝑥)

   (5) 

 

where 

 

{
 
 
 
 

 
 
 
 𝜇𝑖 = ∫ 𝑚𝑖

𝑏

𝑎

(𝑡)𝑢𝑖(𝑡)𝑑𝑡    1 ≤  𝑖 ≤ 𝑛

𝛾𝑖 = ∫ m2̂(𝑥)
𝑏

𝑎

𝑣𝑖(𝑡)𝑑𝑡    1 ≤  𝑖 ≤ 𝑛

𝛿𝑖 = ∫ ℎ𝑖

𝑏

𝑎

(𝑡)𝑢𝑖(𝑡)𝑑𝑡    1 ≤  𝑖 ≤ 𝑛

𝜌𝑖 = ∫ h2̂(𝑥)
𝑏

𝑎

𝑣𝑖(𝑡)𝑑𝑡    1 ≤  𝑖 ≤ 𝑛

         (6) 

 

Simplify both sides of (5) 𝑖 times from 0 to 𝑥, couple with initial 
conditions given in (2), and substituting the resulting equations 

for 𝑢(𝑥)and 𝑣(𝑥) into equation (6) leads to system of algebraic 

equations that can be solved to determine the constants 𝜇𝑖   𝛾𝑖  and 
𝛽𝑖  𝛼𝑖 . Using the obtained numerical values of these constants 

into the obtained equations for  𝑢(𝑥)and  𝑣(𝑥) , the solutions 

𝑢(𝑥)and 𝑣(𝑥) of the system of Fredholm integro-differential 
equations (1) follow immediately. 

 

III. DIRECT COMPUTATIONAL ALGORITHM 
(DCA) 

 

In this section, we formulate four steps algorithm on MAPLE 18 
Mathematical software platform using equations (3) to (6) 

discussed in section II 

Restart: 

Step 1: 

𝑢𝑙𝑐 ≔ 𝜏1; 
𝐴[1]:= 𝑔1(𝑥) + 𝛼; 
𝐴[2]:= 𝑣𝑎𝑙𝑢𝑒(𝑖𝑛𝑡𝐴[1], 𝑥)) + 𝐶[1]; 
𝐴[21]:= 𝑒𝑣𝑎𝑙(𝐴[2], [𝑥 = 0]) = 𝑢𝑙𝑐; 
𝑝:= 𝑠𝑜𝑙𝑣𝑒(𝐴[21],𝐶[1]); 
𝑞:= 𝑒𝑣𝑎𝑙({𝑝}); 
𝐶[1] ≔ 𝑞[1]; 
𝐴[3]:= 𝐴[2]; 
Step 2: 

𝑣𝑙𝑐 ≔ 𝜏2; 
𝐵[1]:= 𝑔2(𝑥) + 𝛽; 
𝐵[2]:= 𝑣𝑎𝑙𝑢𝑒(𝑖𝑛𝑡𝐵[1], 𝑥)) + 𝐶[2]; 
𝐵[21]:= 𝑒𝑣𝑎𝑙(𝐵[2], [𝑥 = 0]) = 𝑢𝑙𝑐; 
𝑝𝑙:= 𝑠𝑜𝑙𝑣𝑒(𝐵[21], 𝐶[2]); 
𝑞𝑙: = 𝑒𝑣𝑎𝑙({𝑝𝑙}); 
𝐶[2] ≔ 𝑞𝑙[1]; 
𝐵[3]:= 𝐵[2]; 
Step 3: 

𝐴[𝑡] ≔ 𝑒𝑣𝑎𝑙(𝐴[3]. [𝑥 = 𝑡]); 
𝐵[𝑡] ≔ 𝑒𝑣𝑎𝑙(𝐵[3]. [𝑥 = 𝑡]); 
 𝑈:= 𝑖𝑛𝑡(𝐾1(𝑥, 𝑡) ∗ 𝐴[𝑡] + 𝐾1̂(𝑥, 𝑡) ∗ 𝐵[𝑡], 𝑡 =

𝑎…𝑏);     

𝑢𝑙 ≔ 𝑣𝑎𝑙𝑢𝑒(𝑈); 
𝑉:= 𝑖𝑛𝑡(𝐾2(𝑥, 𝑡) ∗ 𝐴[𝑡] + 𝐾2̂(𝑥, 𝑡) ∗ 𝐵[𝑡], 𝑡

= 𝑎…𝑏); 
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𝑣𝑙 ≔ 𝑣𝑎𝑙𝑢𝑒(𝑉); 
Step 4: 

𝑃 ≔ (𝛼 = 𝑢𝑙, 𝛽 =  𝑣𝑙); 
𝑄 ≔ 𝑠𝑜𝑙𝑣𝑒({𝑃}); 
𝑅 ≔ 𝑒𝑣𝑎𝑙([𝛼, 𝛽], 𝑄);                                         (7) 

𝛼 ≔ 𝑅[1]; 
𝛽 ≔ 𝑅[2]; 
𝑢(𝑥) = 𝐴[3]; 
𝑣(𝑥) = 𝐵[3]; 
end 

             Here 𝛼, 𝛽, C[1] and C[2] are arbitrary constants 

 
IV. NUMERICAL EXAMPLES 

 
In this section we apply proposed algorithm (7) to solve system 
of Fredholm Integro-Differential equations. The numerical 

solutions obtained converge approximately to the exact solution. 

 

Example 1   

Consider the following first order system of linear Fredholm 
Integro-Differential equations (Wazwaz, 2011). 

 

{
 
 
 

 
 
 𝑢/(𝑥) = cos(𝑥) + 4 + ∫(𝑢(𝑡) − 𝑡𝑣(𝑡))𝑑𝑡

𝜋

0

       

𝑣/(𝑥) = − sin(𝑥) − 𝜋 +∫(𝑡𝑢(𝑡) − 𝑣(𝑡))𝑑𝑡

𝜋

0

  

subject to initial conditions     𝑢(0) = 0  ,   𝑣(0) = 1

  (8) 

 

Exact solution is given     

        {
𝑢(𝑥) = sin(𝑥)

𝑣(𝑥) = cos(𝑥)
                                                          (9)             

 

Compare (7) with equation (8), we have the following: 

 

{
 
 
 
 
 

 
 
 
 
 

𝑎 = 0
𝑏 = 𝜋
𝜏1 = 0
𝜏2 = 1

𝑔1(𝑥) = cos(𝑥) − 4

𝑔2(𝑥) = −sin(𝑥) − 𝜋

𝐾1(𝑥, 𝑡) = 1

𝐾1̂(𝑥, 𝑡) = −𝑡

𝐾2(𝑥, 𝑡) = 𝑡

𝐾2̂(𝑥, 𝑡) = 1

 

 
Substitute the above parameters into algorithm (7), we obtain 
numerical solutions converge approximately to the exact 
solution 

 

{
𝑢(𝑥) = sin(𝑥) +

129608

3778873560001
𝑥

𝑣(𝑥) = cos(𝑥) +
15552000

3778873560001
𝑥

                           (10) 

 

 

Example 2    
Consider the following first order system of linear Fredholm 

Integro-Differential equations (Wazwaz, 2011) 

{
 
 
 

 
 
 
𝑢/(𝑥) = sin(𝑥) + 𝑥𝑐𝑜𝑠(𝑥) + (2 − 𝜋2) +∫(𝑡𝑢(𝑡) − 𝑣(𝑡))𝑑𝑡

𝜋

0

 

𝑣/(𝑥) = cos(𝑥) − 𝑥𝑠𝑖𝑛(𝑥) − 3𝜋 +∫(𝑢(𝑡) − 𝑡𝑣(𝑡))𝑑𝑡

𝜋

0

subject to initial conditions      𝑢(0) = 0 ,   𝑣(0) = 0

(11) 

 

Exact solution is given          

                {
𝑢(𝑥) = 𝑥sin(𝑥)

𝑣(𝑥) = 𝑥cos(𝑥)
                                                     (12) 

 

Compare (7) with equation (11), we have the following:  

 

{
 
 
 
 
 

 
 
 
 
 

𝑎 = 0
𝑏 = 𝜋
𝜏1 = 0
𝜏2 = 0

𝑔1(𝑥) = sin(𝑥) + 𝑥𝑐𝑜𝑠(𝑥) + (2 − 𝜋
2)

𝑔2(𝑥) = cos(𝑥) − 𝑥𝑠𝑖𝑛(𝑥) − 3𝜋

𝐾1(𝑥, 𝑡) = 𝑡

𝐾1̂(𝑥, 𝑡) = −1

𝐾2(𝑥, 𝑡) = 1

𝐾2̂(𝑥, 𝑡) = −𝑡

 

 
Substitute the above parameters into algorithm (7), we obtain 
numerical solutions converge approximately to the exact 

solution. 

 
                    

{
𝑢(𝑥) = 𝑥 sin(𝑥) +

7776004

3779398439999
𝑥

𝑣(𝑥) = 𝑥cos(𝑥) +
64800

3779398439999
𝑥
                             (13) 

 

Example 3      
Consider the following first order system of linear Fredholm 

Integro-Differential equations (Wazwaz, 2011) 
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{
 
 
 
 
 
 

 
 
 
 
 
 𝑢/(𝑥) = −sin(𝑥) − 2𝑥 +

𝜋

2
+

∫((𝑥 − 𝑡)𝑢(𝑡) + (𝑥 − 𝑡)𝑣(𝑡))𝑑𝑡

𝜋
2

0

        

𝑣/(𝑥) = −cos(𝑥) − 2𝑥 −
𝜋

2
+

∫((𝑥 + 𝑡)𝑢(𝑡) + (𝑥 + 𝑡)𝑣(𝑡))𝑑𝑡

𝜋
2

0

subject to initial conditions      𝑢(0) = 2,        𝑣(0) = 1

(14) 

 

   Exact solution is given 

            {
𝑢(𝑥) = 1 + cos(𝑥)

𝑣(𝑥) = 1 − sin(𝑥)
                                            (15) 

 

Compare (7) with equation (14), we have the following:  

 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑎 = 0

𝑏 =
𝜋

2
𝜏1 = 2
𝜏2 = 1

𝑔1(𝑥) = −sin(𝑥) − 2𝑥 +
𝜋

2

𝑔2(𝑥) = −cos(𝑥) − 2𝑥 −
𝜋

2
𝐾1(𝑥, 𝑡) = (𝑥 − 𝑡)

𝐾1̂(𝑥, 𝑡) = (𝑥 − 𝑡)

𝐾2(𝑥, 𝑡) = (𝑥 + 𝑡)

𝐾2̂(𝑥, 𝑡) = (𝑥 + 𝑡)

 

 
Substitute the above parameters into algorithm (7), we obtain 
numerical solutions converge approximately to the exact 

solution 

 

                    {
𝑢(𝑥) = 1 + cos(𝑥)

𝑣(𝑥) = 1 − sin(𝑥)
                                   (16) 

 

 

 

Example 4   
Consider the following first order system of linear Fredholm 

Integro-Differential equations (Wazwaz, 2011) 

 

{
 
 
 

 
 
 𝑢/(𝑥) = −2 sin(2𝑥) −

𝜋

2
+ ∫((𝑥 − 𝑡)𝑢(𝑡) + (𝑥 + 𝑡)𝑣(𝑡))𝑑𝑡

𝜋

0

   

𝑣/(𝑥) = 2 cos(2𝑥) +
𝜋

2
+∫((𝑥 + 𝑡)𝑢(𝑡) + (𝑥 − 𝑡)𝑣(𝑡))𝑑𝑡

𝜋

0

   

subject to initial conditions         𝑢(0) = 1 ,     𝑣(0) = 0

(17) 

 

Exact solution is given   

      

     {
𝑢(𝑥) = cos(2𝑥)

𝑣(𝑥) = sin(2𝑥)
                                                                        (18) 

 

Compare (7) with equation (17), we have the following: 

 

                                             

{
 
 
 
 
 

 
 
 
 
 

𝑎 = 0
𝑏 = 𝜋
𝜏1 = 1
𝜏2 = 0

𝑔1(𝑥) = −2 sin(2𝑥) −
𝜋

2

𝑔2(𝑥) = 2 cos(2𝑥) +
𝜋

2

𝐾1(𝑥, 𝑡) = (𝑥 − 𝑡)

𝐾1̂(𝑥, 𝑡) = (𝑥 + 𝑡)

𝐾2(𝑥, 𝑡) = (𝑥 + 𝑡)

𝐾2̂(𝑥, 𝑡) = (𝑥 − 𝑡)

+ 

 
Substitute the above parameters into algorithm (7), we obtain 
numerical solutions converge approximately to the exact 

solution 

 

                    {
𝑢(𝑥) = cos(2𝑥)

𝑣(𝑥) = sin(2𝑥)
                                             (19) 

 

 
V. NUMERICAL RESULTS AND GRAPHS 

 
   Table 1   Numerical solution of system of  

Fredholm integro-differential equation Example 1 

𝑥 Exact 

Solution 

𝑢(𝑥) 

DMA 

solution 

𝑢(𝑥) 

Exact 

Solution 

𝑣(𝑥) 

DMA 

solution 

𝑣(𝑥) 

0 1.000000 1.000000 1.000000 1.000000 

0.1 0.995004 0.995004 0.995004 0.995004 

0.2 0.980067 0.980067 0.980066 0.980066 

0.3 0.955338 0.955338 0.955336 0.955336 

0.4 0.921062 0.921062 0.921060 0.921060 

0.5 0.877584 0.877584 0.877582 0.877582 

0.6 0.825338 0.825338 0.825335 0.825335 

0.7 0.764845 0.764845 0.764842 0.764842 

0.8 0.696710 0.696710 0.696706 0.696706 

0.9 0.621614 0.621614 0.621609 0.621609 

1.0 0.540306 0.540306 0.540302 0.540302 

 

   Table 2   Numerical solution of system of  

Fredholm integro-differential equation   Example 2 

𝑥 Exact 

Solution 

𝑢(𝑥) 

DMA 

solution 

𝑢(𝑥) 

Exact 

Solution 

𝑣(𝑥) 

DMA 

solution 

𝑣(𝑥) 
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0 0.000000 0.000000 0.000000 0.000000 

0.1 0.099500 0.099500 0.099500 0.099500 

0.2 0.196013 0.196013 0.196013 0.196013 

0.3 0.286600 0.286600 0.286600 0.286600 

0.4 0.368424 0.368424 0.368424 0.368424 

0.5 0.438791 0.438791 0.438791 0.438791 

0.6 0.495201 0.495201 0.495201 0.495201 

0.7 0.535389 0.535389 0.535389 0.535389 

0.8 0.557365 0.557365 0.557365 0.557365 

0.9 0.559449 0.559449 0.559448 0.559448 

1.0 0.540302 0.540302 0.540302 0.540302 

 

   Table 3   Numerical solution of system of  

Fredholm integro-differential equation Example 3 

𝑥 Exact 

Solution 

𝑢(𝑥) 

DMA 

solution 

𝑢(𝑥) 

Exact 

Solution 

𝑣(𝑥) 

DMA 

solution 

𝑣(𝑥) 

0 2.000000 2.000000 1.000000 1.000000 

0.1 1.995004 1.995004 0.900166 0.900166 

0.2 1.980067 1.980067 0.801330 0.801330 

0.3 1.955336 1.955336 0.704479 0.704479 

0.4 1.921061 1.921061 0.610582 0.610582 

0.5 1.877583 1.877583 0.520574 0.520574 

0.6 1.825336 1.825336 0.435358 0.435358 

0.7 1.764842 1.764842 0.355782 0.355782 

0.8 1.696706 1.696706 0.282644 0.282644 

0.9 1.621609 1.621609 0.216673 0.216673 

1.0 1.540302 1.540302 0.158529 0.158529 

 

   Table 4   Numerical solution of system of  

Fredholm integro-differential equation   Example 4 

𝑥 Exact 

Solution 

𝑢(𝑥) 

DMA 

solution 

𝑢(𝑥) 

Exact 

Solution 

𝑣(𝑥) 

DMA 

solution 

𝑣(𝑥) 

0 0.000000 0.000000 0.000000 0.000000 

0.1 0.198664 0.198664 0.198669 0.198669 

0.2 0.389406 0.389406 0.389418 0.389418 

0.3 0.564625 0.564625 0.564642 0.564642 

0.4 0.717333 0.717333 0.717356 0.717356 

0.5 0.841443 0.841443 0.841470 0.841470 

0.6 0.932005 0.932005 0.932039 0.932039 

0.7 0.985409 0.985409 0.985449 0.985449 

0.8 0.999528 0.999528 0.999574 0.999574 

0.9 0.973796 0.973796 0.973848 0.973848 

1.0 0.909241 0.909241 0.909297 0.909297 

         

 
        Fig. 1: Numerical solutions of𝑢(𝑥) and 𝑣(𝑥) Example 1 

 

 
     Fig. 2: Numerical solutions of 𝑢(𝑥) and 𝑣(𝑥) Example 2 

 

     
Fig. 3: Numerical solutions of 𝑢(𝑥) and 𝑣(𝑥)  Example 3 
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VI.  CONCLUSION  

In this paper, four steps algorithm was formulated using direct 
computational approach for the numerical solution of system of 
Fredholm integro-differential equations. The major benefit of 
this approach is to reduce the computation stress due to 
evaluation of differential and integration involve in integro-
differential problems and the results show that the direct 
computation method is a promising tool to handle this type of 
problems and similar problems in engineering sciences. Finally, 
four examples were used to demonstrate that the formulated 
algorithm is an efficient method to determine the solution in 
close form, simple and obtained results quickly. All computation 
works were carried out using MAPLE 18 mathematical software 

package. 
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