A CASE STUDY ON HOW DISTANT TREES APPEAR TO BE MOVING IN THE SAME DIRECTION AS OUR RIDE

Omkar Devidas Kadam
Fourth year, Undergraduate Student, Mechanical Engineering
IIT Gandhinagar, Village Palaj, Gandhinagar, Gujarat -382355, India

Abstract

It is of common observation that, when we ride on a bus, train, or vehicle, the trees alongside seem to travel in the direction opposite to ours. This is on account of the relative motion between us and the trees. Interestingly, it is the motion of the trees that are far away from the road that appears strange. The trees that are far away when observed in the presence of other objects in the foreground almost give the illusion that they are moving along with us in the same direction of the ride. Realizing that not many people are aware of this illusion and hardly there is any illustration to explain it, in what follows, I discussed how this perception could be explained with the help of basic geometry and motion analysis. We refer to this illusion as 'false relative motion'.

Keywords - relative motion, perception, false
relative motion.

I. INTRODUCTION

We consider the situation in which the observer (point O in Fig 1) is traveling along a straight road $O A^{\prime}$. A distant tree B is being observed by the observer, while the other trees or features closer are still in view (tree A, for example). In this note, we seek to show that B will be perceived to move in the same direction as the observer when there are other features or trees present closer to the road, such as A. We first set up this problem with appropriate conventions as below.

Fig. 1. Schematic to explain observed false relative motion.
As shown in Fig $1, i, j$ and k be the right handed orthogonal vectors. At time t, let A and B represent two trees in the open field alongside the road and O represents the observer's position on the road. Let the observer be traveling towards A^{\prime} from O with a constant velocity v. Please note that, $i \| O A^{\prime}, \angle B O A^{\prime}=\alpha, \angle A O A^{\prime}=\theta, l(B O)=R_{2}$ and $l(A O)=R_{1}$.
A. Analysis -

Below we figure out condition under which false relative motion will be observed.

$$
\begin{equation*}
\vec{\omega}=(\dot{\alpha}-\dot{\theta})(-\widehat{k}) . \tag{5}
\end{equation*}
$$

So, (4) may now be written as

$$
\begin{equation*}
\frac{d \hat{r}}{d t}=(\dot{\alpha}-\dot{\theta}) \hat{t} \tag{6}
\end{equation*}
$$

From Fig 1, it is clear that

$$
\begin{equation*}
\dot{\theta}=\frac{v \sin (\theta)}{R_{1}} \quad \text { and } \quad \dot{\alpha}=\frac{v \sin (\alpha)}{R_{2}} . \tag{7}
\end{equation*}
$$

Using (4), (5), (6) and (7), we may write (3) as

$$
\begin{equation*}
\frac{d \widehat{A B}}{d t}=l(A B) v\left(\frac{\sin (\theta)}{R_{1}}-\frac{\sin (\alpha)}{R_{2}}\right)(-\hat{\mathrm{t}}) . \tag{8}
\end{equation*}
$$

Next, let $\vec{v}_{(B / A) O}$ be the velocity of the tree B with respect to the tree A observed by an observer O.
Note that, $\frac{d \overrightarrow{A B}}{d t}=\vec{v}_{(B / A) O}$. Both the trees A and B are on the same side of the road and the tree B is far from the observer hence, we have $\alpha \approx \theta$. Moreover, using (2) and substituting $d=\frac{R_{2}}{R_{1}}$, (8) may be written as

$$
\begin{equation*}
\vec{v}_{(B / A) O}=\sqrt{d^{2}+1-2 d \cos (\alpha-\theta)} v \sin (\alpha)\left(1-\frac{1}{d}\right)(-\hat{\mathrm{t}}) . \tag{9}
\end{equation*}
$$

From (9), for $d>1, \vec{v}_{(B / A) O}$ is along ($-\hat{t}$). Condition for a very long distance between the observer and the tree B is shown in Fig 2. Hence, there is a component of $\vec{v}_{(B / A) O}$ along i direction. But the observer knows that i is the direction of the ride. Hence, this is how the observer feels that the trees that are far away moves in the direction of ride and the instantaneous velocity perceived by an observer can be obtained from (9). Moreover, if the situation is not as special as discussed above, from (8), it can be seen that false relative motion will be observed whenever below condition is satisfied,

$$
\frac{R_{2} \sin \theta}{R_{1} \sin \alpha}>1
$$

II. CONCLUSION

In this note, a phenomenon of false relative motion in which distant stationary objects are perceived to be moving in the same direction of the observer's ride was explained using simple geometry and kinematic analysis. This notion of false relative motion is also applicable in the case of perceived curvilinear motion.

III. ACKNOWLEDGEMENT

I would like to express my sincere gratitude to Prof. Harish P. M. and Sujay Kadam for their guidance and comments which greatly improved the manuscript.

IV. REFERENCES

[1] Meriam J. L. and Kraig L. G., "Engineering Mechanics Dynamics, Seventh Edition", Wiley India, pp. 385-390, 2016.

