

NETWORK TRAFFIC ANALYSIS AND MULTI-LAYER INTRUSION DETECTION IN WIRELESS SENSOR NETWORK

Mrs. M. Vidhya Asst. Professor Panimalar Institute of Technology Chennai Mr. N. Rajesh Asst. Professor Panimalar Institute of Technology Chennai Mrs. K. Suja Rajeswari Asst. Professor Panimalar Institute of Technology Chennai

Abstract - This paper will mentioned at the character and structure of wireless sensor network attacks at different layers of OSI model that may be accustomed establish and answer such attacks. The numerous intrusion detection systems (IDS) are planned to shield WSNs over the network traffic. Be that as it may, of these frameworks are work in a solitary layer of the OSI model and doesn't consider the association and coordinated effort between these layers and also doesn't the board the system traffic. In this manner these frameworks are mainly wasteful in WSN. The arranged work of our cross layer intrusion detection to detect malicious attack at different layer of OSI model and control the network traffic over network using wireshark tool. The objective of our proposed system is an Identifying attack streams and understanding the nature of network traffic will be discussed through the use of and their operation and contribution to fighting malicious network activity will be evaluated by Wireshark tool then detect and prevent the attack by intrusion detection system.

Keywords: Wireless Sensor Network (WSN), Intrusion detection Systems (IDSs), Wireshark.

I. INTRODUCTION

A Wireless sensor system is often characterized as a system of gadgets that may impart the information assembled from an ascertained field through remote connections. The knowledge is distributed through varied hubs, and with a passage, the knowledge is related to totally different systems like remote local area network. WSN could be a remote system that contains of base stations and quantities of hubs (remote sensors). These systems are used to screen physical or natural conditions like sound, weight, temperature and co-operatively go data through the system to a primary space[1]. Sensing element arranges that delineate the parcel of security assaults, for instance, self-sorting out condition, down and out battery power stockpile, restricted information transmission support, seized capacities mistreatment open remote medium, multi jump traffic causing, and reliance on totally different hubs. Security assaults are often consigned into 2 sort's for instance dynamic and uninvolved assault [2]. Uninvolved assault are troublesome to acknowledge and straightforward to dam. Dynamic assaults are easy to spot and troublesome to show away.

Intrusion detection system (IDS) could be a piece of discovering, analyzing and uncovering a bootleg framework [3]. It fine could also be habituated to acknowledge sundry varieties of harmful exercises that may collaboration the protection and notwithstanding obstruction the hubs. IDS are to screen clients' exercises and system execution at varied layers could be a principle objective in WSNs that is known by some bearing is wandered from their commonplace mien as a trespasser.

II. RELATED WORK

In this section present the existing techniques are,

a. Anomaly –based IDS: Anomaly IDS is utilized for little estimated WSNs any place couple of center point talks with the base station are talked in regards to in [4]. It will build up novel ambushes exclusively along these lines can't recognize the exceptional attacks. It's light-weight in nature however will deliver an a great deal of false alerts.

b. Signature based IDS: Signature IDS is utilized for significant measurable WSNs, any place bigger security threats and attacks will cut value get ready activities. It will't locate the novel ambush along these lines can essentially recognize existing attacks

[5] so it's need an a great deal of benefits and calculations when put alongside oddity based IDS.

c. Hybrid IDSs: Hybrid IDSs is utilized for Brobdingnagian and reasonable WSNs. It will recognize novel and for certain comprehended ambushes since it's every peculiarity based and signature-based IDS however it needs an a great deal of assets and calculations [6].

d. Cross layer IDS: Cross layer IDS basically will set up the different layer attacks and what is more breaks the standard layer oversees yet it's devoured the more vitality [7].

III. PROPOSED WORK

In this section, describing the planned work of Network Traffic Analysis in Wireless Sensor Network using Wireshark. Network Sniffers are programs that catch low-level bundle data that is transmitted over a network[8]. Partner assaulter will investigate this information to get important data like client ids and passwords. Network sniffing is that the strategy for catching data bundles sent over a system. Sniffing are regularly used to;

- Capture touchy data like login accreditations
- Eavesdrop on visit messages

• Capture records are transmitted over a system

Sniffing the network using Wireshark

Wireshark arrange investigation device at one time alluded to as Ethereal, catches bundles continuously and show them in comprehensible configuration. Wireshark incorporates channels, shading committal to composing, and elective alternatives that license you delve profound into system traffic and look at singular bundles. the most things to catching bundles, sifting them, and reviewing them and Wireshark to look at a suspicious program's system traffic, examine the traffic stream on your system, or investigate system issues.

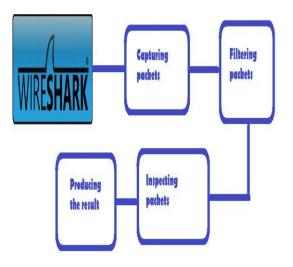


Fig. 1 Block diagram of proposed work.

Capturing Packets

The Figure.2 demonstrated the important part of catching bundles consequently interfaces and moreover catches traffic on remote system so click on remote interface. Wireshark catches each bundle sent to or from your framework.

4	The Wir	eshark N	Vetwor	k Analyzei							-
File	Edit	View	Go	Capture	Analyze	Statistics	Telephony	Wireless	Tools	Help	
		•	81.0	XG	9 👳 🖻) 😤 👔	& ☴ ▤	$\Theta_{\mathbf{Q}} = \mathbf{Q}_{\mathbf{Q}}$	Q. III		
A	pply a di	splay filt	er <	Ctrl-/>							🔁 🔹 B
	_										
	We	lcome t	o Win	eshark							
	Cap	oture									
	usin	ig this filt	er: 🚺	Enter a c	apture filter						
	Virtu	alBox H	ost-Oi	nly Netwo	k	Л					
	Wi-F	i 		\		L	~. [
		vare ivet met 2	work /	Adapter VN	/IN845/L		_				
			work /	Adapter VN	Inet1	Л					
	Ethe	rnet									

Fig. 2 Wireshark Network Analyzer WiFi Window.

The wanton mode empowered of course and sees all the contrary bundles on the system instead of exclusively parcels routed to our system connector. to check whether unbridled mode is empowered, click Capture > decisions and confirm the "Empower indiscriminate mode on all interfaces" checkbox is initiated at extremely modest of this window is appeared in beneath fig.3

	Cap	oturi	ing f	rom	Wi-	Fi																						-	
File	e E	dit	Vi	ew	Go) (Capt	ure	Ar	nalyz	e	Stat	istic	s	Tele	pho	ny	Wir	reles	s 1	Fool	s ⊦	lelp						
		۵	۲				×	G	Q	¢	۲	•	Î	J				Ð,	Q	0									
	Appl	/ a d	lispla	ay filt	er	<ct< th=""><th>rl-/></th><th>></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>→</th><th>•</th><th>Ð</th></ct<>	rl-/>	>																			→	•	Ð
No.			Time				s	ource	e					De	stina	tion					Prot	ocol	Le	ngth	In	fo			_
+	20	31	36.	951	443		2	607	:f8b	0:4	00e	:c0	4:	26	01:	1c0	:cf@	30:8	3961	l:	TLS	v1.2	2	120	Ap	pl:	icat	tion	C
	20	32	36.	951	504		2	601	:1c0	:cf	00:	896	1:	26	07:	f8b	0:40	00e:	c04	ł:	тср			74	- 58	884	1 →	443	[
	20	33	36.	951	770		2	601	:1c0):cf	00:	896	1:	26	07:	f8b	0:40	00e:	c04	ł:	TLS	v1.2	2	120	Ap	pl:	icat	tion	C
	20	34	37.	017	175		2	607	:f8b	0:4	00e	:c0	4:	26	01:	1c0	:cf@	30:8	3961	l:	тср			74	44	ł3 -	÷ 58	3841	[
	20	35	37	216	674		2	601	·1c0	hef	aa ·	896	1+	26	07 ·	f8h	a•10	30e -	C (05	÷ .	тср			127	[1	CP	SPO	men	۲
> >	Eth Int	ern ern	et i et i	II, Pro	Sno		[nt) /er:	elCo sior	or_3 1 6,	8:b Sr	e:b c:	d (260	7c: 1:1	5c:† c0:0	f8:3	38:b 9:89	be:b 961:	od), e18	Ds 2:3	t: 669	Asu c1	03:5	C_3 336	5:e4 , D:	4:c st:	8 (26	1c: 07:	87:1 f8b0	9:
00	00	_		_			_		5c													8							
00					-			26						89								• • • •							
00	20		_	_	_	_		26 e5		f8				0c c7								.@							
	40							e5 50		00 01		91	11	67	63	40	79			.n. P			. NY						
0) 7	v	Vi-Fi:	: <liv< td=""><td>e ca</td><td>pture</td><td>e in p</td><td>orogr</td><td>ess></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Pad</td><td>kets:</td><td>242</td><td>2 · Di</td><td>spla</td><td>yed:</td><td>242</td><td>2 (1</td><td>00.0</td><td>%)</td><td>P</td></liv<>	e ca	pture	e in p	orogr	ess>										Pad	kets:	242	2 · Di	spla	yed:	242	2 (1	00.0	%)	P

Fig. 3 Capturing Packet.

Snap the red "Stop" button near the most elevated left corner of the window once you wish to forestall catching traffic appeared in fig.4 Wireshark uses hues to detect the classifications of traffic at a look. As a matter of course, light purple is transmission control convention traffic, light-weight blue is UDP traffic, and dark recognizes parcels with mistakes.

6	Capturing from Wi-Fi				-
File	Edit View Go	Capture Analyze Statisti	ics Telephony Wireless	Tools H	elp
	<u> </u>	X C 9 👳 🕸	🚺 🗐 🗐 କ୍ ବ୍	€, ∰	
A p	opfy a display filter <c< th=""><th>trl-/></th><th></th><th></th><th>📑 🔻 E</th></c<>	trl-/>			📑 🔻 E
No.	Time	Source	Destination	Protocol	Length Info
	1 0.000000	fe80::1e87:2cff:fe3	ff02::1	ICMPv6	134 Router Adver
Г	2 3.063059	192.168.29.250	72.165.61.185	UDP	126 54656 → 2701
	3 3.075895	192.168.29.250	23.92.23.135	TCP	66 59500 → 443
	4 3.175677	23.92.23.135	192.168.29.250	TCP	66 443 → 59500
(5 3 175782	192 168 29 250	22 02 22 125	TCP	5 <u>4</u> 59500 → 443
> Fr	rame 2: 126 bytes	on wire (1008 bits),	126 bytes captured	(1008 bits) on interface 0
> Et	thernet II, Src:	IntelCor 38:be:bd (7c	:5c:f8:38:be:bd), Dst	t: Asustek	C 35:e4:c8 (1c:87:2c

Fig. 4. Capturing Traffic over WiFi

Filtering Packets

The most fundamental gratitude to apply a channel is by composing it into the channel box at the most elevated of the window and clicking Apply or squeezing Enteric appeared in fig .5 we can moreover snap Analyze > show Filters to pick a channel from among the default channels encased in Wireshark. From here, we can include our own custom channels and spare them to just access them inside the future and right-click a parcel and pick Follow > transmission control convention Stream at that point see the total TCP voice correspondence between the customer and server and furthermore click elective conventions in the Follow menu to learn the full discussions for different conventions is appeared in fig.6

File	Edit	View Go	Capture Analyze Statistics	s Telephony Wireless	Tools	Help		
						ricip		
1	L.	0 6	809€€	🛓 📃 ପ୍ ପ୍ ପ୍	뷮			
d	ns						X =	Y E
No.		Time	Source	Destination	Protoco	Length	Info	
			0001.1.0500.0001.	2601:1c0:cf00:8961:	DIC	00	Standard	que
*	305	5.248733	2001:100:0100:0301:"	2001.100.0100.0901	UND	20	Scalluaru	900
*		5.248733 5.249092		2601:1c0:cf00:8961:			Standard	-
*	306		2601:1c0:cf00:8961:…		DNS	90		que

Fig. 5. Filtering DNS Packet

File			apture Analyze Statistics			elp					
Ĺ		0	। 🖸 🤇 🗢 🔿 🗟 🛉	🕹 📃 📃 କ୍ ର୍ ଜ							
, I	tcp.stream eq 35 🛛 🛛 💌										
No.		Time	Source	Destination	Protocol	Length	Info				
ŕ	1054	2.798483	192.168.29.250	131.253.61.66	ТСР	66	60375 → 443				
	1078	2.891263	131.253.61.66	192.168.29.250	ТСР	58	443 → 60375				
	1079	2.891359	192.168.29.250	131.253.61.66	ТСР	54	60375 → 443				
	1080	2.891527	192.168.29.250	131.253.61.66	TLSv1.2	288	Client Hell				
	1103	2.992980	131.253.61.66	192.168.29.250	ТСР	1514	[TCP segmer				
	1104	2 992980	131 253 61 66	192 168 29 250	тср	1514	TCP segmen				
Σ	Frame	1078: 58 bytes	s on wire (464 bits),	58 bytes captured (46	64 bits)	on int	erface 0				
×	Etherr	et II, Src: As	sustekC_35:e4:c8 (1c:8	37:2c:35:e4:c8), Dst:	IntelCor	_38:be	:bd (7c:5c:				
×	Interr	et Protocol Ve	ersion 4, Src: 131.253	3.61.66, Dst: 192.168.	29.250						

Fig. 6. Filtering TCP Packet

Inspecting Packets

Snap a parcel to choose it and burrow right down to peruse its subtleties and also right-click one among the important part and utilize the Apply as Filter various leveled menu to make a channel bolstered it appeared in fig7.Wireshark is utilized to redress arrange convention usage, look at security issues and inspect organize convention internals. Fig.7 Inspecting Packets.

Intrusion Detection at layer

Wireshark won't manipulate things on the network, it'll solely "measure" things from it. Wireshark doesn't send packets on the network or do alternative active things (except name resolution, however that may be disabled)

The design of cross layer that works articulation and relationship of 3 neighboring layers within the OSI show i.e. system, raincoat and physical layers is planned. Fig.8 shows the flow chart of intrusion detection at every layer [9][11].

• Intrusion detection at network layer: Intrusion detection system is to see whether or not it's presence of the sending hub within the routing table. On the off likelihood that it's no betokens then lunch the persona non grata caution. The routing is procedure of separate the most effective manner within the system. The eq. (1) depicted as metric worth

$$M = x1*H + (x2*stability + x3*load)/H$$
(1)

Where, x1, x2, x3: weights of hop range, stability, traffic load

H: hop range Stability=0.1* node+ Packet Count Load=queue/total buffer

Intrusion detection at MAC layer: to get the wellspring of the bundle that might be gotten by driving data. The main data utilizes the bounce consider metric. On the off probability that it's no betokens then lunch the persona non grata alert commonly go to the ensuing layer. A skip is one a player inside the way among supply and objective Routing data uses jump consider the measurement.

Hop Count = scope of Routers information from supply to goal

• Intrusion detection at physical layer:

he validity of contestant hub are checked by action its RSSI (Received Signal Strength Indicator)

worth. RSSI speaks to the entire got control. The got power Pr is delineated as in identical.

$$Pr=Pt^{*}(1/d)n$$
(1)

Here, Pr - receiving power,

Pt - transmitted power,

d - Distance among sender and recipient hub

n - Transmission issue whose value relies upon the spread environment.

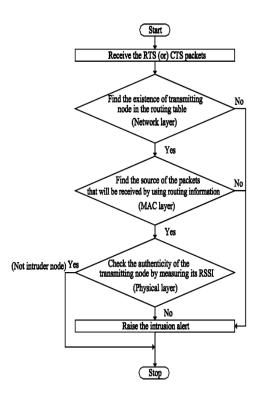


Fig. 8 Flow chart of intrusion detection layers

IV. RESULT AND DISCUSSION

Survey of intrusion detection is executed by using the network simulator NS2

Creating of Sensor Network

For making sensor arrange we are going to utilize Wi-Fi hub of NS-2 the reproduced model is built on fifty hubs then we will create sinks hubs that get data from sensor hub appeared in Fig.9

First could be a Base Station (BS) that is accustomed to making the bunch and winnows the Cluster Head (CH) which has most noteworthy vitality hold inside the group [10].

The course of action of chains of hub relies upon directing information sent by all systems then all the system hubs can transmit and store up data to their CH through the chain of close to hubs, Then CHs are assume the liability of sending and got information on to the BS and utilize 2 famous steering conventions of different methodology -AODV. A scheming vitality hub we will apply vitality module of NS-2 on each hub that is lessening the undesirable hub so vitality are spared is appeared in Fig.10.

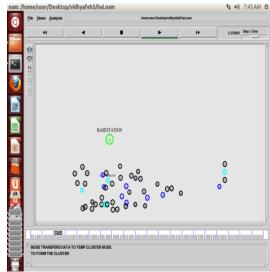


Fig.9 Node Transmission

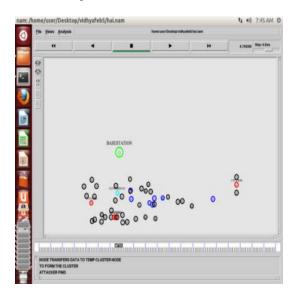


Fig.10 attacker nodes are detected and prevented

V. PERFORMENCE ANALYSIS

Initially computed the number of entrant nodes detected throughout simulation progresses. Allow us to surmise that assailer nodes goal and assail indiscriminately network nodes when being in purposeless period. The Fig. 11 shows that result.

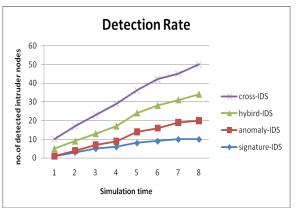


Fig. 11 Number of detected intruder nodes v/s simulation time

VI. CONCLUSION

This paper present idea of coming up with a security mechanism have to be compelled to think about the wireless sensing element network attacks at totally different layers. Anomaly-predicated IDSs are used for minute sized WSN however it will engender a lot of pretend alarm. Signature-predicated IDSs are used for relatively sizably voluminous-sized WSNs still it's some expenses like change and inserting inchoate signatures. The most objective is security, the planned cross layer intrusion detection system dedicated for WSNs. Our methodology is associate characteristic attack streams and understanding the character of network traffic are mentioned through the utilization of and their operation and contribution to fighting malicious network activity will be evaluated by Wireshark tool then discover and stop the attack by cross layer intrusion detection system.

VII. REFERENCES

[1] Culler, D. E and Hong(2004), W., "Wireless Sensor Networks", Communication of the ACM, Vol. 47, No. 6, pp. 30-33.

[2] Padmavathi ,G and D, Shanmugapriya. (2009), "A survey of attacks, security mechanisms and challenges in wireless sensor networks," International

Journal of Computer Science and Information Security, vol. 4, no. 2.

Engineering and Scientific International Journal (ESIJ), ISSN 2394-7187, Volume 4, Issue 1.

[3] Onat,I and A, Miri(2005), "An intrusion detection system for wireless sensor networks," In Proceeding of the IEEE International Conference on Wireless and Mobile Computing, Networking and Communications , Vol. 3, Montreal, Canada, pp. 253–259.

[4] Bhuse, V and A. Gupta.(2006), "Anomaly intrusion detection in wireless sensor networks," Journal of High Speed Networks, Vol. 15, No. 1, pp. 33–51,.

[5] Shiva Murthy G, Robert John D'Souza, and Golla Varaprasad (2012), "Digital Signature-Based Secure Node Disjoint Multipath Routing Protocol for Wireless Sensor Networks", IEEE Sensors Journal, Vol. 12, No. 10.

[6] K.Q. Yan, S.C. Wang, C.W. Liu(2009), "A Hybrid Intrusion Detection System of Cluster-based Wireless Sensor Networks", Proceedings of the International Multi Conference of Engineers and Computer Scientists 2009, Vol IIMECS 2009, Hong Kong.

[7] Prof.Srinivasan, M.Vidhya(2015), "Cross Layer Based Anomaly Intrusion Detection In Wireless Sensor Network" Advances in Natural and Applied Sciences, 9(6) Special, pp. 607-613.

 [8] S. Ansari, Rajeev S.G. and Chandrasekhar
 H.S(2003), "Packet Sniffing: A brief Introduction", IEEE Potentials, Dec 2002-, Volume:21, Issue:5, pp:17 – 19

[9] M.Vidhya, Prof.Srinivasan, R,Sudha,"MULTI LAYER INTRUSION DETECTION AND PREVENTION IN WSNs USING SELF HEALING MODULE(2015)" International Journal of Science, Engineering and Technology Research (IJSETR Volume 4, Issue 3,pp.424-429, ,ISSN:2278-7798.

[10] Su, C.C, K.M. Chang, Y.H. Kue, and M.F. Horng.(2005), "The new intrusion prevention and detection approaches for clustering-based sensor networks," in Proceedings of 2005 IEEE Wireless Communications and Networking Conference (WCNC'05), Vol. 4, New Orleans, L.A.,pp. 1927-1932.

[11] M. Vidhya, A. Irudaya paul raj Vinod & A. Porselvi(2017) "Cross Layer Intrusion Detection System in WSNs using Self Rejuvenating Module",