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Abstract— The physically impaired commonly have difficul-
ties performing simple routine tasks without relying on other
individuals who are not always readily available and thus make
them strive for independence. While their impaired abilities
can in many cases be augmented (to certain degrees) with the
use of assistive technologies, there has been little attention to
their applications in embodied AI with assistive technologies.
This paper presents the modular framework, architecture, and
design of the mid-fidelity prototype of MARVIN: an artificial-
intelligence-powered robotic assistant designed to help the
physically impaired in performing simple day-to-day tasks.
The prototype features a trivial locomotion unit and also
utilizes various state-of-the-art neural network architectures
for specific modular components of the system. These compo-
nents perform specialized functions, such as automatic speech
recognition, object detection, natural language understanding,
speech synthesis, etc. We also discuss the constraints, challenges
encountered, potential future applications and improvements
towards succeeding prototypes.

Keywords: embodied AI, automatic speech recognition,
object detection, natural language understanding, speech
synthesis.

I. INTRODUCTION

There have been tremendous discoveries and break-
throughs in the field of artificial intelligence and robotics
in the past few decades, and technology has accordingly
grown from being seen as eliminating the need for humans
to augmenting our abilities and in the process, making life
easier. Consequently, this poses a challenge in bringing these
technologies to their useful applications in our daily lives.

A reported estimate of 1 billion people live with one or
more disabilities around the globe, in accordance with a
population estimate of 9.6 billion people (World Health Or-
ganization and others, 2011). The aged also possess slowly

degrading physical functionalities and functional impair-
ments which varies from one individual to another (Janssen,
Samson, and Verhaar, 2002). The global population aged 60
years and above were estimated to be 962 million in 2017
and expected to double by 2050, during which it is projected
to reach nearly 2.1 billion (United Nations, 2017).

These impairments make performing day-to-day tasks
difficult for these individuals and thus affect the quality of
their lives, i.e. hygiene, feeding, alimentations, work, etc
(ValenÃ, Santos, Lima, Santana, and Reis, 2017). The aged
phase of life is often made more difficult due to social
factors such as subjectivity to discrimination, constructed
social exclusion and stigmatization (Rapolienė, 2015).

Physical impairments can be caused by natural aging,
diseases (hypertension, glaucoma, cataracts, etc.), accidents,
injuries, natural impairments since birth, etc.

While assistive technologies addressing some of these
physical impairments have been undergoing rigorous re-
search and development for decades, they mostly take the
form of aids and are often incorporated or attached to
the impaired individual’s body, which in many cases do
not suffice well to enable them to perform their daily
activities effectively. Some previous assistive technologies
include electric wheelchairs, electroencephalography, digital
walking sticks, bone-anchored hearing aid (Wikipedia con-
tributors, 2019b), mobility scooters (Wikipedia contributors,
2019f), cochlear implants, prosthesis, text-to-voice wands,
intelligent personal digital assistants, etc.

Current IPDAs such as Alexa, Siri, and the Google
Assistant are not readily integrable and customizable to
run on specialized hardware especially due to the closed-
source natures of their architectures and software systems.
Other challenges include immobility, non-interactivity with
the physical world around them, and the few user interfaces
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they readily support leading to inaccessibility for people
with the counter-impairments (relative to the user interface).

Our approach tries to help them perform some of these
tasks. We propose a simple and modular robotic system
utilized toward this end. We also propose an Intelligent
Personal Robotic Assistant (IPRA) architecture, which in
contrast to the Intelligent Personal Digital Assistant archi-
tectures (IPDA) (Sarikaya, 2017), is highly modular, readily
integrable with various hardware components for robotics
applications, and highly prioritizes the modular, multimodal
and fusible nature of the user interfaces.

While the current prototype of the robotic system is basic,
does not yet provide support for dynamic environments and
specialized use cases, this only serves as a mid-fidelity
prototype and at the same time, a proof-of-concept for our
framework and architecture, and serves as a basis for future
prototypes. The system can be easily built on, improved and
used in coordination with pre-existing assistive technologies.

Our current system prototype utilizes a mixture of
lightweight state-of-the-art neural network architectures to-
wards a problem decomposition approach, which in turn
makes it more reliable in comparison to fully End-to-End
(E2E) AI robotic systems that are in many cases question-
able due to the non-interpretability of the representations of
the world around them, thus making their decisions highly
difficult to probe.

Running modern state-of-the-art neural network archi-
tectures often requires huge computation power and large
memory requirements due to the hundreds of millions and
often billions of parameters they possess and in effect need
to deployed on costly hardware devices to meet real-time
requirements.

While it is noteworthy that for the affordability and
general acceptability of these systems, there is an impending
need for them to be deployable on cost-effective hard-
ware platforms often consequently possessing constrained
resources as these cost money. This is addressed mostly
by building a series of prototypes, and balancing resource
consumption against the quality of solutions provided by
these systems (Lugaresi et al., 2019) whilst paying atten-
tion to cost. Nonetheless, a common practice is to start
with a simple system with optimal resources, incrementally
add more features and accordingly add more resources as
required.

Also worth noting is the nature of complexity that arises
from designing these systems, due to the non-deterministic
timing of events often received by the system and real-time
constraints frequently imposed in the process. In a lossless
data processing pipeline, backpressure is always avoided and
monitored, this is worsened when the designated hardware
doesn’t have enough resources to counteract the effects of
these liable limitations. Our framework provides a few basic
components to address these complexities and limitations.

The proposed architecture also highly prioritizes the mod-

ular, multimodal, and fusible nature of the user interfaces
to enable it to serve a wide variety of people with/without
disabilities, which most current IPDA architectures do not
prioritize but instead possess non-modular unimodal user
interfaces with limited interactivity and accessibility. The
framework’s flexibility also allows for the easy deployment
of engineered, E2E, and reinforcement learning models
within the architecture. The multimodal nature and fusible
user interfaces allow the system to fuse and contextualize
semanticized sampled data such as visual cues, gestures, and
speech into higher-level semantic data. Another benefit of
its multimodal nature is that it gives the system a better
understanding of context.

II. CAPABILITIES

Listed below are the assistive capabilities (Skills)
implemented into the current prototype of the robot:

• Facial Recognition
• Time Querying
• Schedule Organization
• Phone Call Initiation
• Object Finding
• People Finding
• Intruder Detection
• Visually Impaired Guidance
• Smart Home Devices Control (Bulbs, Fans, etc.)

III. HARDWARE SPECIFICATIONS

• Acrylic Plastic: Used for the robot’s physical enclosure.
This was elected due to inaccessibility to 3d Printers.

• Raspberry Pi 3B: 1.2GHz, Quad-core Broadcom
BCM2837 64bit CPU, 1GB RAM (Raspberry PI Foun-
dation, n.d.). This is the main computation powerhouse.
This has a minimal computational power that is good
enough for the initial prototype.

• Raspberry Pi Camera: 0.5MP, RGB-888. For capturing
images used in object detection and facial recognition.

• STM32 Nucleo-F302R8T6: 72MHz, 16KB SRAM, 32
KB Flash (STMicroelectronics, n.d.). For controlling
the obstacle detection unit and other physical compo-
nents.

• HC-SR04 Ultrasonic Sensor: For obstacle detection.
• MG996R Brushed DC Servo Motor: 120o range,

0.14s/60o @ 6V (Electronicos Caldas, n.d.). This tilts
the ultrasonic sensor during beamforming.

• L293D Dual H-bridge DC Motor Driver.
• Generic Mono-channelled 16-bit USB Microphone: For

keyword spotting and speech interaction.
• Generic USB Speaker: For audio and speech output.
• 74HC-595 8-bit Shift Register: For parallel-series out-

put.
• 5V and 12V Brushless DC Fans: For forced-air con-

vection cooling of the whole system.
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• Heat Sinks: For convection cooling of the driver chips,
microcontrollers, and microcomputers.

IV. SOFTWARE ARCHITECTURE

In this section, we describe the layers in our IPRA
architecture. The architecture is shown in Figure (1).

A. Input Devices Layer

This is part of the system that accesses/interfaces various
hardware components of the system needed to get necessary
input data samples from the environment. This is readily
available in the Linux kernel (implemented via udev) with
various drivers that manage the hardware and resources used
in the system.

B. Input Manager

This collects the various data samples received from
the Input Devices Layer and dispatches them to the
appropriate User Interfaces. This is beneficial espe-
cially when there are multiple User Interfaces in use
and a need to share the incoming raw samples or route them
to the appropriate User Interfaces arises.

C. User Interface

This processes the data samples collected from the envi-
ronment or generated by the system to add various additional
semantics required in its utilization. For example in a voice
interactivity setting, it is often required to merge various
incoming audio samples from microphone arrays into a
frame containing multi-channel samples. This is also useful
in a setting where we need to merge/fuse camera and
microphone samples. They can take the form of a neural
network, perform simple signal processing and/or chained
together to obtain different levels of semantics.

D. Semantic Interpreter

This models the semanticized data samples and interprets
them into commands represented as Skill identifiers and
its Entities that are passed to the Skill Manager.
This can be implemented as an Automatic Speech Recog-
nizer, Gesture Recognizer, Sign Language Recognizer, etc.
depending on the nature of the incoming data and end-user-
interface.

E. Skill Manager

This part of the system dispatches the recognized
Skills, evaluates the Skill’s Entities
(tokens/parameters) and ensures the Skill’s Entities
and requirements are completed and fulfilled by interacting
with the user via the output User Interface (if any).

F. Skill Registry

This part of the system that contains the Skills’
definitions and requirements.

G. Skill

This unit defines how the robot is meant to execute
the semanticized instruction received through the User
Interface. This can also be developer or end-user de-
fined via a generic though restricted interface. Skills are
similar to Alexa Skills and Google Assistant Actions.

V. FRAMEWORK

Our framework increases the speed of developing these
systems and also makes them easier to conceptualize since
they perform lots of real-time processing and involve com-
plex data-flows often in a multi-threaded fashion. These
components are loosely coupled to allow for flexibility,
composability, and suitability for unit testing. The system is
represented as a directed acyclic graph consisting of Nodes
with multi-input/output channels termed Streams. Some of
the implemented components are based on some real-time
design patterns such as Observer and Watchdog.

A. Node

A node is the unit of the graph that performs computa-
tions. Not to be confused with ROS Nodes (ROS contribu-
tors, 2016), this can contain a whole program and does not
rely on inter-process communication. This is highly similar
to Mediapipe’s Calculators (Lugaresi et al., 2019). A
Node runs on at most one thread at an execution timepoint.
Nodes operating on different threads can communicate via
Streams.

B. Packets

This is a basic data unit of a generic type that flows from
one Node to another. It is implemented as a cheaply and
efficiently copied data structure.

C. Streams

This component of the framework serves as a connection
between two or more components of the framework, this
either serves as a multi or mono output channel, therefore
either serving one or more Packets per execution time-
point. A Stream of Packets is implemented as a single-
ended thread-safe queue. Streams can be lossy or lossless.
Lossy Streams can miss a specified number of successive
Packets in case it is unable to keep up with the data
flow rate and thus avoiding backpressure, while Lossless
Streams are not allowed to miss any Packets and must
be processed within a specified time frame.
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Fig. 1. IPRA Architecture

D. Watchdog

The Watchdog monitors the rate of data flow from
one component to another along a Stream, ensures real-
time constraints are met and monitors backpressure along
the Stream. This is configured via a data-only structure
specifying the requirements i.e latency, and throughput.

E. Latch

This is a mechanism that helps control the flow of
Packets along the Stream, this is useful when serving
multiple Streams and there is a need to control the flow of
Packets to some or all of the Streams, this is controlled
via a binary-state input Stream. This stops or resumes an
already stopped flow of Packets along a Stream.

F. Aggregator

This component of the framwork continuously slices
accumulated sampled data across a specified interval (time-
window), this is especially useful in aggregating audio or
video samples for performing deep learning inference.

G. Attention Node

This is a special type of Node, this serves as a state
Stream to the system, this is useful when it is not necessary
to perform actions on every received input. An Attention
Node is implemented as a Node whose inputs are generic
input Streams and outputs are Streams of bits. This can be
integrated with Deep Neural Networks and other algorithms.

H. Skill Registry

This implements the Skill Registry component of
the IPRA architecture IV-F. This serves as a router from one
data type to another, this includes integers, strings, pointers,
function pointers, functors, etc. For example, a Skill
Registry is implemented as a hash table of string keys
to functor values which are executed on the same thread or
another thread depending on the specified execution policy.

I. Skill

This implements the Skill component of the architec-
ture IV-G. This can be as simple as a query-only Skill
which only needs to respond to a user via the selected
interface (e.g. speech synthesizer) upon request. Skills are
of two types, namely:

1) High-Level Skills: Both developers and end-users can
create this type of Skill. They only have access to the
abstracted utilities and device platform’s features exposed
to them by the developer.

2) Low-Level Skills: This type of Skill is intended for
developer utilization. They typically have access to the lower
level system utilities and hardware resources.

VI. MECHANICAL DESIGN

A. Locomotion Unit

We utilize a trivial 4-wheel locomotion unit, this not
only simplifies our initial prototype but also enables us to
reduce its cost. This is controlled by the STM32 Nucleo
F302R8T6 microcontroller running at 72kHz.
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Fig. 2. Speech Only Interface Architecture using our IPRA framework. This is a streamlined version of our original deployed architecture. This highlights
the key components of our framework used in implementing the architecture.

Fig. 3. L-R. Left Sectional and Front View of Marvin

The microcontroller receives a 16-bit data packet over
UART at a baud rate of 115200. The received data contains
10 bits of information consisting of the direction bits and
the speed bits, this is received via interrupts and executed
immediately by a self preempting high priority daemon.

Fig. 4. Locomotion Unit Control Packets
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D : 2 bits, represents the following directions:
• Left Forward
• Left Backward
• Right Forward
• Right Backward

V : 8 bits, represents speed (normalized to [0 , 255 ]).
The locomotion unit is stopped by setting the speed bits

to zero in any direction. The microcontroller then transmits
the received data to the L293D motor controller via PWM
pulses which in turn varies the voltages passed to the
brushed DC motors.

B. Obstacle Detection Unit

We utilize a time-of-flight (ToF) based sensor for obstacle
detection, namely the cost-effective HC-SR04 ultrasonic
sensor which utilizes ultrasonic sound waves. We employ
a simple beamforming technique, by rotating the sensor
vertically with an MG996R brushed DC servo motor. The
maximum detectable obstacle distance is restricted to a
threshold of 2.5m to allow for faster sampling which is
a common trade-off in ToF technologies that utilize slow
flight mediums. The ideal obstacle distance can simply be
computed from the time-of-flight as:

Dideal =
Cair × T

2
(1)

where Dideal ,Cair ,T ∈R, Dideal denotes flight dis-
tance (ignoring acoustic attenuation (Wikipedia contributors,
2019a)) of the sound wave, Cair denotes the speed of
sound in air (Cair ≈ 346ms−1 at room temperature) and
T denotes time taken for the sound wave to reach an
obstacle and return to the sensor. Thus, by limiting Dideal

to a maximum of 2.5m , we can ideally obtain a sampling
frequency of 69.2Hz .

The MG996R servo motor has a minimum operating
latency of 0.14s for every 60o at a running voltage of 6V
(Electronicos Caldas, n.d.), this can turn at a maximum angle
of 120o, therefore θ ∈ [0.0, 120.0]. Though it does not have
a feedback control system, future versions of the prototype
will address this. There are more accurate servo motors with
a larger θ, but due to cost reasons, we utilized the MG996R
servo motor

Figure 5 Illustrates how we perform beamforming by
varying the inclination angle of the ultrasonic sensor θ
through the servo motor. The unit is placed such that D1

y is
small enough to be safely climbed by the robot and the 120o

coverage of the ultrasonic servo covers our area of interest
(the dotted arc).

Thus, the component distances relative to the ultrasonic
can be computed using the simple relation:

Dy = Dideal × tan θ (2)

Dx = Dideal × cos θ (3)

While it is clear that the mechanism is highly depen-
dent on the robot’s body configuration, our evaluation also
revealed that the mechanism is highly subject to environ-
mental distortions, which can be compensated for using
filtering algorithms. Most of our design decisions are greatly
influenced by the limited hardware at our disposal, future
versions hope to address this.

Fig. 5. Obstacle Detection Technique using A Servo and an Ultrasonic
Sensor

C. Trunk
The trunk has a cuboidal structure (See Figure 3). This

houses the batter/power pack, control circuitry, locomotion
unit, and the STM32 Nucleo F302R8T6 microcontroller.
Attached to its front is a mono-channeled USB speaker and
the obstacle detection unit described in Subsection VI-B.

D. Head
The Head houses the Raspberry Pi 3B microcomputer.

Attached to its top is a microphone array used for sampling
audio waveforms. To its front are attached two LEDs that
illustrate the consciousness state of the robot i.e. Red for
awaiting a command, Green for receiving a command,
Yellow for executing a command. An RGB-888 0.5MP
camera is also attached to its front for performing object
detection, facial recognition, and other computer-vision-
related tasks. The Head is connected mechanically to the
Trunk via the high-torque MG996R servo which tilts the
Head and is controlled by the STM32 Nucleo F302R8T6
microcontroller.
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E. Cooling

We perform forced air convection cooling by using heat
sinks and high-velocity brushless 12V and 5V DC fans as
the temperature of the system tend to rise to 80oC during
prolonged usage.

VII. KEYWORD SPOTTING

This part of the system runs continuously on-device and
detects for a Hotword. The major implication arising from
this is that the Keyword Spotting (KWS) system needs to
have minimal latency, enough to meet real-time require-
ments whilst maintaining decent false-accept and recall rates
(He et al., 2018; Sun et al., 2017).
The raspberry pi 3 typically runs at 1.2GHz (Quad-core)
with a Broadcom BCM2837 64bit CPU having 1GB of
RAM (Raspberry PI Foundation, n.d.), this limits the in-
tensity of computation and memory size of the model that
can be run on this device, and thus the architectures need
to be carefully evaluated and benchmarked.

Though Traditional systems employ Hidden Markov
Models in KWS tasks to model both the keyword and back-
ground noise, they were superseded by Recurrent Neural
Networks and Convolutional Neural Networks (He et al.,
2018; Wikipedia contributors, 2019e). We utilize the cnn-
trad-fpool-3 architecture which is one of the popular small-
footprint keyword spotting architectures that have been
increasingly gaining traction due to the limited number of
multiplies and parameters they possess (He et al., 2017;
Sainath and Parada, 2015; Sun et al., 2017).

A. Dataset

For our experiment, the word ”Marvin” is chosen as the
Hotword.
We utilize the Environmental Noise Classification (ESC)
dataset (Piczak, 2015) to augment the training data and
make the model rely on more robust features and be less
susceptible to background noises. We also used the Speech
Commands Dataset (Warden, 2018). Next, we manually
crowd-sourced 569 audio samples from 125 volunteers
within our university. These datasets primarily consisted of
single-channel waveforms at 48kHz sampled under quiet
conditions. To reduce the computational load, we resam-
pled the audio samples from 48kHz to 16kHz, at this
sampling frequency, the intelligibility of human speech is
retained and the discretized-time sampled signal also retains
spatio-temporal information useful enough for inference
(Wikipedia contributors, 2019g). Next, the resulting corpus
is converted into a signed 16-bit PCM encoded format,
clipped to 1s, then shuffled and split into training, test and
evaluation sets in the ratio of 10:1:2 respectively.

B. Architecture

The maximum duration Dmax , allowed for an utterance
of the keyword is 1000ms . Our implementation of cnn-trad-
fpool-3 has an approximate size of 8.5 MB with an average
running latency of 11.8 ms and a 336µs standard deviation
per unit-batch inference, which is sufficient for our use case.

type m r n p q Par.
conv 24 10 64 1 3 15.4K
conv 12 5 64 1 1 164.8K
lin - - 32 - - 65.5K
dnn - - 128 - - 4.1K

softmax - - 4 - - 0.5K
Total - - - - - 250.3K

where:
m = kernel size along the temporal dimension.
r = kernel size along the frequency dimension.
n = number of kernels or hidden units.
p = downsampling stride size along the temporal dimension.
q = downsampling stride size along the spatial dimension.
This model architecture only pools in frequency and not
along the temporal dimension.

C. Augmentation

To make the model more useful in real-world scenarios
and more robust to noises, distortions, and compensate for
informalities not reflecting in the original datasets, we ap-
plied a few augmentation techniques on the dataset, namely:

• Pitch Augmentation
• Speed Augmentation
• Pitch-Speed Augmentation
• White-Noise Augmentation
• Background-Noise Augmentation
• Value Augmentation
• HPSS Augmentation
• Random Shift Augmentation

The noise augmentations were applied at SNRs randomly
sampled between [−5dB , 10dB ]

D. Preprocessing

To eliminate temporal redundancy in the sampled wave-
forms, we apply a 40-dimensional log-Mel energy filter bank
feature extraction, this also makes training easier as many
repetitive temporal features are removed in the process.

E. Training

A multi-category classification approach is employed to
allow the model rely on more robust features of the input
distribution, rather than in a binary classification scheme
where the model is more liable to rely on non-robust
features of the input distribution. The vanilla categorical
cross-entropy loss function is used in this effect.
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The learning rate and batch sizes are fine-tuned on the test,
training, and evaluation sets. Figure 7 exhibits the training
and test inferences’ accuracy and loss graphs.

Fig. 6. Sample Keyword Log-Mel Energy Filter Bank Feature

F. Deployment
To further reduce the computation load, we quantized the

model from 32-bit floating-point precision to 8-bit signed-
integer precision using the quantization regime specified in
Subsection 4, this comes with minimal accuracy tradeoffs.
We continuously shift the discretized-time sound sampling
aggregation window by 250ms and aggregate 1s of samples,
this enables us to have decent coverage of the incoming data
samples as the position of the Hotword is non-deterministic.
The aggregated sound samples are then passed to the inter-
preter to perform inference.

VIII. SPEECH SYNTHESIS

We utilized the Google Cloud Platform to synthesize
natural-sounding high-fidelity speech via a pretrained gen-
erative autoregressive neural network, namely Wavenet (van
den Oord et al., 2016; Wikipedia contributors, 2019d).
Wavenet especially takes advantage of dilated and casual
convolutions which makes it efficient and model spatio-
temporal features of speech at a remarkable accuracy. This
model generates natural-sounding audio whilst modeling
linguistic features of a given text to a remarkable extent.
A downside to the model is its large size and inference
latency which inherently made us deploy it to the Google
Cloud Platform. With sufficient hardware upgrade we can
overcome this limitation.

IX. INTENT RECOGNITION

This part of the system recognizes Skill Intents
and Tokens from a given speech input. This is performed
using the Google Cloud platform’s Dialogflow Speech-Intent
engine (Wikipedia contributors, 2019c). This is primar-
ily because models yielding decent performance on intent
recognition and/or natural language understanding tasks are
often computationally intensive and have large memory
requirements as the probabilistic distribution of the modelled
data is highly multi-dimensional. We utilized pre-existing
DialogFlow Skill definitions and implemented custom
ones such as Phone Call Initiation, Object Finding, and
People Finding.

X. FACIAL RECOGNITION

This part of the system is used for facial recognition,
emotion detection, and intruder detection. As such the
system also needs to execute at a decent speed and accuracy,
to this end, we utilize the populous Facenet neural network
architecture (Schroff, Kalenichenko, and Philbin, 2015).
Facenet performs at a very high accuracy on real faces
(99.65% on the LFW dataset (Huang, Ramesh, Berg, and
Learned-Miller, 2007), 95.12% on YouTube Faces Database
(Lior Wolf and Maoz, 2011)).
Facenet’s approach yields state-of-the-art performance on
face-recognition tasks which is due to the great representa-
tional efficiency of the architecture whilst using only 128-
bytes embeddings per face (Schroff et al., 2015), with this
approach we were able to eliminate the need to retrain our
models every time a new face is added into the system as
this would be very computationally intensive and impractical
for real-world use cases. However, the saved 128-bytes
embeddings are not used to train any additional classification
model instead the face recognition module employs the use
of the L2 metric to calculate the distances between two
face embeddings and identifies the subject. The faces are
recognized if the L2 distance satisfies a specified unary
predicate. The relation can be expressed as:

S =

i=1∑
n=128

(Êi − Ei)
2

IdentifierPredicate(S) =

{
1, if S ≥ threshold
0, otherwise

where Êi, Ei ∈ R128, S ∈ R1 and
Êi = Face Embedding
Ei = Reference Face Embedding
S = Squared Euclidean Distance Between Êi and Ei

We made use of the serially layered-pipeline approach
and at the first layer of the pipeline the image taken from
the camera is passed through a Haar Feature-Based Cascade
Classifier which then gives a bounding box to each of the
faces detected in the image, the closest face to the camera (or
the face with the biggest bounding box) is then sent down
through the pipeline for further processing. At the second
layer, the output of the first layer is resized to R1×160×160×3,
which is the tensor input shape of the Facenet model. At
the third layer, the output of the second layer is normalized
to a mean of 128 and standard deviation of 128 and then
converted from 32-bit floating precision to it’s unsigned
8-bit equivalent which is the expected input type of the
quantized Tflite model, the output of this layer is then
passed to the Tflite Facenet model which then computes
the feature encoding (∈ R128). We employed the use of
quantization-aware training in other to minimize accuracy
degradation when the model is converted to a quantized
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Fig. 7. L-R Training Loss and Accuracy Graphs for Our cnn-trad-fpool3 Implementation

format. To improve the model’s speed and also reduce
its size, we quantized it using the symmetric 8-bit signed
integer quantization with the zero-point set to 0. The 8-
bit signed quantization scheme approximates floating-point
values using the relation (Google Developers, n.d.):

real value = (int8 value− zero point)× scale (4)

XI. OBJECT DETECTION

This part of the system is intended for Detecting Objects
and People. This is capable of detecting common items such
as Kettles, Cups, Chairs, Beds, Tables, Laptops, Books, etc.
It is especially useful for the visually impaired. We utilize
a pretrained Mobilenet model (Howard et al., 2017).

The Mobilenet architecture is a streamlined and small-
footprint architecture that performs remarkably well in
mobile and embedded vision applications. The model is
lightweight and highly efficient due to its extensive uti-
lization of depthwise-separable convolutions which are a
form of factorized vanilla convolutions (Howard et al., 2017)
whilst still modeling the data distribution remarkably though
with a minimal accuracy tradeoff. This thus greatly reduces
the number of multiplies and the model’s size relative to
a vanilla convolutional neural network. The model was
quantized using the quantization regime described in 4.

XII. CONCLUSION AND FUTURE WORK

In the literature, we proposed a novel architecture called
IPRA. We also illustrated how we can implement a variety
of user interfaces using the multi-modal user interface and
hardware agnostic architecture. We investigated some of
the important design decisions leading to a cost-effective
and interactive modular robot. As a next step to help the
adoption, exploration, and advancement of this Architecture,
we plan on releasing the framework and robotic assistant
system implementation. In future high-fidelity prototypes,
we plan on implementing and integrating more useful fea-
tures, integrating high-quality sensors and actuators, and
upgrading our hardware to enable it to run the whole

software fastly and locally without dependence on cloud
services. Further, we plan to extend our experiments to
different environmental conditions in the wild and integrate
filtering and sensor fusion algorithms.
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