
 International Journal of Engineering Applied Sciences and Technology, 2021

 Vol. 6, Issue 5, ISSN No. 2455-2143, Pages 24-29

 Published Online September 2021 in IJEAST (http://www.ijeast.com)

24

COMPARISON OF SOFTWARE

COMPLEXITY OF SEARCH ALGORITHM

USING CODE BASED COMPLEXITY

METRICS

Bello Muriana

Information technology and resource center,

Kogi State University, Anyigba, Nigeria

Ogba Paul Onuh

Information technology and resource center,
Kogi State University, Anyigba, Nigeria

Abstract: Measures of software complexity are

essential part of software engineering. Complexity

metrics can be used to forecast key information

regarding the testability, reliability, and

manageability of software systems from study of

the source code. This paper presents the results of

three distinct software complexity metrics that

were applied to two searching algorithms (Linear

and Binary search algorithm). The goal is to

compare the complexity of linear and

binary search algorithms implemented in (Python,

Java, and C++ languages) and measure the sample

algorithms using line of code, McCabe and

Halstead metrics. The findings indicate that the

program difficulty of Halstead metrics has

minimal value for both linear and binary search

when implemented in python. Analysis of

Variance (ANOVA) was adopted to determine

whether there is any statistically significant

differences between the search algorithms when

implemented in the three programming languages

and it was revealed that the three (3)

programming languages do not vary considerably

for both linear and binary search techniques

which implies that any of the (3) programming

languages is suitable for coding linear and binary

search algorithms.

Keywords: Complexity metrics, Searching

algorithm, linear search, binary search, ANOVA,

Halstead's complexity metric and McCabe cylomatic

complexity metrics.

I. INTRODUCTION:

Software complexity has ushered in a new age in

recent years. In the field of computer science there is

no universally accepted definition of software

complexity most of the definitions are based on Zeus'

perspective of software complexity. He opined that

"Software complexity" is the level of difficulty in

analyzing, maintaining, testing, designing, and

modifying software" (Zuse, 1993). The term

"software complexity" can be characterized as the
primary determinant of software cost, dependability,

and performance of software. Software complexity

can also be defined as the extent wherein the design

or implementation of a system or component is hard

to understand and validate. Basili (1980) defines

complexity as a measure of the resources consumed

by a system while interacting with a software

program to complete a task, if the interacting system

is a computer, the complexity is determined by the

computation's execution time and storage

requirements while if the interacting system is a
programmer, the difficulty of executing tasks such as

writing, debugging, testing, or updating the software

is defined as complexity. Software complexity is a

vast issue in Software Engineering that has drawn

attention of large number of researchers since 1976,

and a number of metrics to quantify software

complexity have been suggested. This metric is

extremely important in software management and

plays a significant influence in project success.

During the development phases of software, the

amount of effort required evaluating requirements,

design, code, test, and debug of the system is heavily
influenced by complexity. Complexity shows the

difficulty in error repair and the effort required to

 International Journal of Engineering Applied Sciences and Technology, 2021

 Vol. 6, Issue 5, ISSN No. 2455-2143, Pages 24-29

 Published Online September 2021 in IJEAST (http://www.ijeast.com)

25

alter a specific software module during the

maintenance phase.

The growing importance of software measurement

and metrics has driven the development of new

software complexity measurement and software

engineering metrics, which are critical for project

planning and measurement estimations. Higher

quality software has resulted from greater demand for

software quality, and quality is now the primary

distinction between software solutions. As a result,

software designers and developers must take

significant steps from the start to review, enhance,

and accept software products. Software measurement
has been an important aspect in determining the

complexity and quality of software in recent years.

The paper is organized as follows Section I contains

the introduction to Comparison Of Software

Complexity of Search Algorithm Using Code Based

Complexity Metrics; Section 2 the software

complexity metrics review; Section 3 contain finding

complexity of software; Section 4, the statistical

analysis used to measure the equivalence of

comparison groups; Section 5 describes results and

discussion; Section 6 the conclusion.

II. SOFTWARE COMPLEXITY METRICS

REVIEW

Several methods for determining software complexity

metrics have been presented. The line of code (LOC),

McCabe's cyclomatic complexity, Halstead's

software metric, and the Cognitive weights model are

among the most commonly referenced

measurements. We will briefly talk about these

measurements in the sections that follow.

A. Line of Code (LOC) Complexity

Counting the lines of executable code is the simplest

technique to determine a program's complexity.

There is a significant link and relationship between

code complexity and code size, which affects

reliability and increases implementation and running

time. (Nystedt S., and Sandros C. 1999). It takes
longer to design a program with a higher LOC value.

Logical lines of code (LLOC) are generally more

valuable than physical lines of code. LOC provides a

good measure of a program's complexity because it is

simple to construct, and does not necessitate

sophisticated procedures and calculations (Jones C.,

2006). Furthermore, counting lines of code can be

converted from a manual to an automated process. It

is, however, programmer and language dependent,

and it does not take code functionality into account.

(Yu S. and Zhou S., 2010).

B. McCabe’s Cyclomatic Complexity

Complexity

The cyclomatic number was defined by McCabe as

the number of linearly independent pathways that a

program is counted (van der Meulen M. J. P., 2007),

and it is calculated by generating program's flow

graph. The cyclomatic number is calculated using the

formula (Sharma A., Kushwaha D.S., 2010).

M(C) = V(G) = e – n + 2p 1

Where:

V(G) is the cyclomatic complexity

e represent the number of edges of the graph

n represent the number of nodes of the graph
p represent unconnected parts in the graph. A

value of M larger than 10 is not recommended for

any single module.

During all phases of the development lifecycle, the
cyclomatic number can be simply computed.

Cyclomatic metric enhances the testing process,

identifies the most important regions for testing, and

provides the amount of software tests that should be

performed. However the Cyclomatic number, only

gives a partial picture of complexity.

C. Halstead Complexity Metric (HCM)

Halstead popularized the term "software science,"
which refers to the application of scientific methods to

investigate the features and structure of software. The

Halstead complexity metric was created as a result of

this idea. The HCM is determined by the number of

operators and operands (Halstead, 1977). The

operators are symbols that are used in expressions to

define how the alteration will be done. The operands

are the basic logic units that must be used to operate

the system. Based on these assertions, some variables

can be calculated thus;

The length N of P: N = N1 + N2 2

The vocabulary n of P; n = n1 + n2 3

The volume V of P: V = N × 𝑙𝑜𝑔2𝑛 4

The level of L of P: L = (2 × 𝑛2) / (n1 × N2) 5

Program difficulty: D of P: D = (n1/2) × (N2 / n2) 6

The effort E to generate P is calculated as; E = D×V 7

Where n1 is the number of unique operators, n2 is the

number of unique operands, N1 is the total

occurrences of operators, N2 is the total occurrences

of operands and P is the overall program's task. The

Halstead technique is simple to implement, compute,

and utilize in any programming language. It also

reduces the rate of errors and maintenance labor.

 International Journal of Engineering Applied Sciences and Technology, 2021

 Vol. 6, Issue 5, ISSN No. 2455-2143, Pages 24-29

 Published Online September 2021 in IJEAST (http://www.ijeast.com)

26

D. Weighted Class Complexity

 Two metrics were proposed by Mistra and

Akman (2008) for inheritance and class features of the

object oriented code. Both metrics are based on

cognitive weights. For including the inheritance

property of the object oriented code, the authors first

suggested calculating the weight of individual method

in a class by associating a number (weight) with each

member function (method), and then add all the
weights of all the methods, this is the weight

(complexity) of a specific class object. Depending on

the architecture, there are two cases for determining

the total complexity of the complete system (if the

system is composed of more than one class or object):

i. if the classes' objects are in the same level

then the weights of the classes' objects are

added

ii. If they are subclasses of their parent, their

respective weights are multiplied.

If the object-oriented code has m levels of depth and

level j includes n classes, the cognitive code

complexity (CCC) of the system

is: 𝐶𝐶𝐶𝑗=1 ∏ [Σ𝑛𝐶𝐶𝑗𝑘] 8𝑚
𝑘=1

The second metric introduced by Misra and
Akman (2008) is based on the idea that the

complexity of a single method depends on both

attributes and complexity of the method. Weighted

Class Complexity (WCC) was proposed by the

authors and is given as:

𝑊𝐶𝐶 = 𝑁𝑎 + ∑ 𝑀𝐶𝑝 9

𝑠

𝑝=1

Where Na is the total number of attributes and MCp is
the complexity of pth method of the class. If an object-

oriented code has y classes, the total complexity of the

code is equal to the sum of individual class weights.

Total Weighted Class Complexity is

= ∑ 𝑊𝑊𝐶𝑥 10

𝑦

𝑥=1

Both metrics are used in a modified and enhanced

form in the proposal, Mistra and Akman (2008).

2. Complexity Of Programs

In this paper, the complexity of various languages
implementation was determined using the following

steps:

i. Line of Code (LOC) counts line of codes that do not

contain comments

ii. McCabe method (MC): using cyclomatic

complexity method MC = V(G) = e – n + 2p

iii. Program difficulty (D): using Halstead method D

of P is D = (µ1 ÷2) * (N2 ÷ µ2)

Three complexity metrics were applied to linear
search and binary search algorithm that are

implemented in three object oriented languages: C++,

Python and Java. For each program we used line of

code, cyclomatic and halstead to find the complexity,

hence the three metrics were compared. The Python,

Java and C++ code for linear search algorithm are

given in figure 1, figure 2 and figure 3 respectively

while the flow graph for the languages were also

prepared but are not included here because of lack of

space. Software complexity metrics were calculated

and the results presented in tables 1 and 2. LOC has
the highest values for both linear and binary search

algorithms when implemented in C++, Python has the

lowest value of complexity for all the variations of

different measures except with McCabe Cyclometric

metric.

Complexity Values

 Line of code

metrics

McCabe

Cyclomatic number

Halstead Metrics

(Program

Difficulty)

Python 15 7 19.3

Java 27 7 39.9

C++ 29 6 28.3

Table 1: Comparison of the metrics for linear search algorithm

Complexity Values

 Line of

code

metrics

McCabe

Cyclomatic

number

Halstead Metrics (Program

Difficulty)

Python 23 5 31.3

Java 37 4 52.2

C++ 40 4 42.3

Table 2: Comparison of the metrics for Binary search algorithm

 International Journal of Engineering Applied Sciences and Technology, 2021

 Vol. 6, Issue 5, ISSN No. 2455-2143, Pages 24-29

 Published Online September 2021 in IJEAST (http://www.ijeast.com)

27

 Fig1: Python code for linear search algorithm.

Fig 2: Java code for linear search algorithm.

Fig 2: Java code for linear search algorithm.

3. Statistical Analysis
Analysis of Variance (ANOVA) was used to generate

inferential judgments in experimental design studies

to assure the equivalence of comparison groups even

when the number per group vary across the group.

Therefore statistical analysis carried out used

ANOVA at 0.05 significant levels for values

obtained.

Tables 3 and 4 show the ANOVA table for the search

algorithms and it was discovered that 𝑓0.05 2, 6 = 5.14

> 0.56 for linear search and 𝑓0.05 2, 6 = 5.14 > 0.30

for binary search, since the Ftable exceeds the

Fcalculated for both linear and binary search we

accept the null hypothesis Ho, therefore there is

significant relationship between the metrics and the

programming languages for linear and binary search

techniques.

Source of

variation

Sum of

Squares (SS)

Degree of

freedom (DF)

Mean

squares (MS)

F

Between

groups

182.2 2 91.1 0.56

Error

(Residual)

969 6 161.6

Total

1151.2 8

Table 3: ANOVA table for linear search

lst = []

items = int(input("Enter the number of items: "))

for n in range(items):

 numbers = int(input("Enter the %d number: " %n))

 lst.append(numbers)

keyValue = int(input("Enter number to search for: "))

found = False

for i in range(len(lst)):

 if lst[i] == keyValue:

 found = True

 print("%d found at location %d" % (keyValue, i))

 break

if not found:

 print("%d is not in list" % keyValue)

input()

import java.util.Scanner;

public class linearsearch{

 public static void main(String args[])

 {

 int i, len, keyValue, items[];

 Scanner input = new Scanner(System.in);

 System.out.println("Enter number of items ");

 len = input.nextInt();

 items = new int[len];

 System.out.println("Enter " + len + " items ");

 for (i = 0; i < len; i++)

 {

 items[i] = input.nextInt();

 }

 System.out.println("Enter the search value ");

 keyValue = input.nextInt();

 for (i = 0; i < len; i++)

 {

 if (items[i]== keyValue)

 {

 System.out.println(keyValue +" is present at

location "+(i));

 break;

 }

 }

 if (i == len)

 System.out.println(keyValue + " doesn't exist");

 }

}

#include<iostream>
using namespace std;
int main() {
cout<<"Enter The Size Of items: ";
int items;
cin>>items;
int array[items], keyValue,i, n;
// Taking Input In Array
 for(n=0; n<items; n++){
 cout<<"Enter "<<n<<" Element: ";
 cin>>array[n];
 }
 cout<<"Enter KeyValue to Search: ";
 cin>>keyValue;

 for(i=0;i<items;i++){
 if(keyValue==array[i]){
 cout<<"Key Found At Index Number : "<<i<<endl;
 break;
 }
 }
if(i != items){

cout<<"KEY FOUND at index : "<<i;
}
else{
cout<<"KEY NOT FOUND in Array ";
}
 return 0;

}

 International Journal of Engineering Applied Sciences and Technology, 2021

 Vol. 6, Issue 5, ISSN No. 2455-2143, Pages 24-29

 Published Online September 2021 in IJEAST (http://www.ijeast.com)

28

Table 4: ANOVA table for binary search

III. RESULTS AND DISCUSSION

A. Complexity of Various Implementation of

Linear Search

There are significant disparities in the implementation

complexity of the various languages, as seen in table 1

shows a comparison of the object-oriented languages

of Python, Java and C++ using linear search as a case

study for comparison. The figure shows that the length

(in lines) of a program written in Python is smaller than

that of a program written in Java and C++. This means
that Python is less difficult than Java and C++ if

measure with LOC. The McCabe method of

C++ language is less than that of Python and Java

because the implementations are based on the same

number of steps and decision points and thus have the

same value for cyclomatic complexity, the program

difficulty using Halstead method for Python language is

less than that of Java and C++.

Fig 4: A comparison of the complexity of the Object Oriented

Languages Python, Java and C++ for linear search algorithm

B. Complexity of Various Implementation of

Binary Search

There are also significant disparities in the
implementation complexity of the various languages,

as illustrated in table 2. The figure depicts a

comparison of the object-oriented languages Python,

Java and C++ by employing binary search. The table

shows that the LOC of Python is less than that

of Java and C++ programs which implies that

Python has less complexity than Java and C++. The

McCabe method of Python is greater than that of Java

and C++ while Java and C++ have the same value for

McCabe method. The program difficulty of Python is

less than that of Java and C++, in this case Python

has less complexity than Java and C++ using binary

search.

Fig 5: A comparison of the complexity of the Object Oriented

Languages Python, Java and C++ binary search algorithm

IV. CONCLUSION

It was discovered that the McCabe method has

relatively insignificant complexity values for linear

search in Python, Java and C++, with the value of

C++ language being six (6) while Python and Java

being seven (7). In binary search, the calculated

complexity with the McCabe approach is higher for
Python while Java and C++ have the same values.

Further statistical research of Analysis of Variance

(ANOVA) revealed that the three (3) languages do

not differ substantially for both linear and binary

search methods. As a result, it can be stated that any

of the three (3) programming languages is good to

code linear search and binary search algorithms.

V. REFERENCES

[1] Banker R.D., Srikant M.D., Kemerer C.F., and

Zweig D. (1993) “Software complexity and

maintenance cost”, Communications of the ACM,

Vol. 36, No. 11, (pp. 81–94).

 [2] Gill G.K., and Kemerer C.F. (1991) “Cyclomatic

complexity density and software maintenance

productivity”, IEEE Transactions on Software

Engineering, Vol. 17, No.12, (pp. 1284–1288,1991).

 [3] Halstead M. H. (1977) “Elements of Software

Science, Operating and Programming Systems

Series”, Elservier Computer Science Library North

Holland N. Y. Elsevier North-Holland, Inc. ISBN 0-

444-00205-7.

0

5

10

15

20

25

30

35

40

45

Line of code

metrics

McCabe

Cyclomatic

number

Halstead

Metrics

(Program

Difficulty)

Python

Java

C++

0

10

20

30

40

50

60

Line of code

metrics

McCabe

Cyclomatic

number

Halstead

Metrics

(Program

Difficulty)

Python

Java

C++

Source of

variation

Sum of

Squares (SS)

Degree of

freedom (DF)

Mean squares

(MS)

F

Between

groups

272.2 2 136.1 0.30

Error

(Residual

)

2754.8 6 459.1

Total 3027 8

 International Journal of Engineering Applied Sciences and Technology, 2021

 Vol. 6, Issue 5, ISSN No. 2455-2143, Pages 24-29

 Published Online September 2021 in IJEAST (http://www.ijeast.com)

29

[4] Jones C. (1998), “Strength and weaknesses of

software metrics”, University of Magdeburg,

3(1998)1, (pp. 35-44)

[5] Kaur H., and Verma N. (2016) “Software

Complexity Measurement: A Critical Review”,

International Journal of Engineering and Applied

Computer Science (IJEACS) Volume: 01, Issue: 01

ISBN: 978-0-9957075-0-4

[6] McCabe, T.H. (1976) “A Complexity Measure‖,

IEEE Transaction on Software Engineering”, SE – 2,

6, pp. (308 – 320).

 [7] Milutin A. (2009): "Software code metrics",

(Online: accessed on 2010-06-21 from Introduction

to Algorithms).

[8] Munson J. C., and Khoshgoftaar T. M. (1992)

“The detection offault-prone programs”, IEEE

Transactions on Software Engineering, Vol. 18, No.

5, (pp. 423–433)

 [9] Olabiyisi S., Omidiora E and Sotonwa K (2013)

“Comparative Analysis of Software Complexity of

Searching Algorithms Using Code Based Metrics”,

International Journal of Scientific & Engineering

Research, Volume 4, Issue 6, ISSN 2229-5518.

[10] Sharma A., and Kushwaha D.S. (2010) “A

Complexity measure based on requirement

engineering document”, Journal of Computer

Science and Engineering, vol 1, No.1, (pp. 112-117).

[11] Van der Meulen M. J. P. (2007) “Correlations

between internal software metrics and software

dependability in a large population of small C/C++

programs”, 18th IEEE International Symposium on

Software Reliability Engineering, (pp. 203-206).

[12] Yu S., and Zhou S. (2010) “A survey on metric

of software complexity”, IEEE International

Conference on Information Management and

Engineering (ICIME), (pp. 352-356)

