
 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 4, Issue 10, ISSN No. 2455-2143, Pages 141-144
 Published Online February 2020 in IJEAST (http://www.ijeast.com)

141

A NEW APPROACH TO INCREASE LZW

ALGORITHM COMPRESSION RATIO

 Srinivasa Rao Namburi

Asst. Prof, Dept of IT
Bapatla Engineering College, Bapatla,

AP, India

P A V Krishna Rao

Asst. Prof, Dept of IT

Bapatla Engineering College, Bapatla,

AP, India

Abstract: Data compression techniques are widely used as

it reduces the consumption of exclusive resources. LZW is

one of the widely used lossless compression algorithm for

this purpose. The paper attempts to increase compression

ratio of the LZW algorithm by proposing new approach.

Keywords: Data Compression, Dictionary, LZW,

Compression ratio.

I. INTRODUCTION

LZW is a popular lossless compression algorithm [7] which

gives a better practical compression ratio. This project aims to

increase the compression ratio by enhancing existing LZW

algorithm. Concentrate mainly on text compression [5] since

text plays a vital role in the digital world.

LZW is a dictionary based algorithm [8]. We are compress

and decompress the file using dictionary. In this dictionary

first 256 codes are reserved for entire ASCII character set.

Lateral entries in the LZW dictionary are strings and codes.

Approach is appends some selective set of frequently

encounter string patterns.

II. LITERATURE SURVEY

The important criterion for compression evaluation is

compression ratio which is expected to be raised. The data
compression is of two types: Lossy and lossless [6]. Lossy

[10] is preferable for audio, video, and images since it is

bearable of having low quality. Whereas text compressions

strongly recommend lossless because nobody wants to have

some meaningless or even sometimes horrible messages

instead of correct ones.

 Praveen Kumar Muvva

Asst. Prof, Dept of IT
Bapatla Engineering College, Bapatla,

AP, India

Prasad G

Asst. Prof, Dept of IT

Bapatla Engineering College, Bapatla,

AP, India

2.1 Lossless verses Lossy compression

(1) The advantage of lossy [9] methods over lossless

methods [1] is that in some cases a lossy method can

produce a much

(2) smaller compressed file than any known lossless

method, while still meeting the requirements of the

application.

(2) Lossless compression schemes are reversible so that the

original data can be reconstructed, while lossy schemes accept

some loss of data in order to achieve higher compression.

2.2 Data Compression Ratio

Data compression ratio [2] is the criteria to know reduction

size of the compressed file over uncompressed file.

Compression ratio = Uncompressed size
 Compressed size

Thus a representation that compresses a 10MB file to 2MB

has a compression ratio of 10/2 = 5. Meaning that the file size

was cut down to 5th portion of its original size. Always we try

to increase this number by using efficient algorithms.

2.3 Related research paper

(1) The R. Nigel Horspool [3] attempts to improve LZW with

three techniques that include Redundancy Encoding String

Indexes, Estimating Probabilities for String Numbers,

Exploiting Possibilities for Adaptive Loading of the
Dictionary.

2.4 LZW Data Compression

Lempel-Ziv-Welch (LZW [4]) is a universal lossless data

compression algorithm created by Abraham Lempel, Jacob

Ziv, and Terry Welch.Lempel- Ziv-Weltch (LZW) is one of

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 4, Issue 10, ISSN No. 2455-2143, Pages 141-144
 Published Online February 2020 in IJEAST (http://www.ijeast.com)

142

the powerful existing compression algorithms. It finds in

many important applications like win zip, 7zip and etc.

1. LZW is a fixed length coding algorithm. Uses 12bit

unsigned codes. First 256 codes are the entire ASCII

character set. Lateral entries in the LZW dictionary are

strings and codes.

2. Every LZW code word is a reference to a string in the

dictionary.

3. LZW compression replaces strings of characters with
single codes. It does not do any analysis of the incoming

text. Instead, it just adds every new string of characters

it sees to a table of strings. Compression occurs when a
single code is output instead of a string of

characters.

Basic idea [1]

(1) Replaces strings of characters with single integer codes.
(2) A table of string/code pairs is built as the compression

algorithm reads the input file.

(3) The table is reconstructed as the decompression algorithm

reads.

2.5 Compression

The LZW compression algorithm [1] in its simplest form is

shown below. A quick examination of the algorithm shows

that LZW is always trying to output codes for strings that are

already known. And each time a new code is output, a new
string is added to the string table.

Algorithm 1: LZW Compression Algorithm [12]

1: if (STR = get input character) is not EOF then

2: while there are still input characters do

3: CHAR = get input character

4: if STR+CHAR is in the string table then

5: STR = STR+CHAR

6: else

7: output the code for STR

8: add STR+CHAR to the string table

9: STR = CHAR
10: end if

11: end while

12: Output the Code for STR

13: end if

Fig 2.1 LZW Compression algorithm

2.6 Decompression

The companion algorithm for compression is the

decompression algorithm [4].It needs to be able to take the
stream of codes output from the compression algorithm, and

use them to exactly recreate the input stream.

The table can be built exactly as it was during compression,

using the input stream as data. This is possible because the

compression algorithm always outputs the STRING and

CHARACTER components of a code before it uses it in the

output stream. This means that the compressed data is not

burdened with carrying a large string translation table.

Algorithm 2: LZW Decompression Algorithm

1: Read OC = OLD CODE
2: if OC is not EOF then

3: output OC

4: CHARACTER = OC
5: while there are still input characters do

6: Read NC = NEW CODE

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 4, Issue 10, ISSN No. 2455-2143, Pages 141-144
 Published Online February 2020 in IJEAST (http://www.ijeast.com)

143

7: if NC is in not DICTIONARY then

8: STRING = get translation of OC

9: STRING = STRING + CHARACTER
10: else

11: STRING = get translation of NC

12: end if

13: output STRING

14: CHARACTER = first character in STRING

15: add OC + CHARACTER into the DICTIONARY

16: OC = NC

17: end while

18: Output string for code

19: end if

III. DESIGN

The design plan is with respect to the salient considerations

discussed below.

3.1 Design Considerations

Performance considerations:

 Compression ratio: number of bits reduced.

Dictionary decisions:

How large should we make the dictionary?

What do we do if the dictionary fills?

The size of the dictionary is limited by the code length of the

algorithm and if the dictionary overflow occurs then no more

new entries into the dictionary is possible after compress the

rest by using the dictionary constructed so far.

Data decisions:

Can we shape the dictionary to improve compression?

Can we shape the data to make it easier to compress?

We will shape the dictionary by appending some more strings

at initial stage and by switching from unsigned to signed

codes. We shouldn’t shape the data because in lossless the

requirement is “nothing should be lost because of

compression and as it is should be retrieved by decompression
[13]”.

3.2 Design Approach

3.2.1 Appending frequently encountered string patterns to the

dictionary.

The words having the high probability of occurrence in the

general text will be added to the dictionary selectively. For

example, words like as, at, an, in, on and etc. Using this we

can reduce the number of bits required.

Eg: Communication, working and etc.

3.3 Modified LZW Compression Algorithm[11]

Algorithm3: Modified LZW Compression Algorithm

1: if (STR = get input character) = EOF then

2: while there are still input characters do

3: CHAR = get input character

4: if STR+CHAR is in the String table then

5: STR = STR+CHAR

6: else

7: output code for STR

8: add STR + CHAR into the String table
9: STR = CHAR

10: end if

11: end while

12: Output the code for STR

13: end if

3.4 Modified LZW Decompression Algorithm

Algorithm4: Modified LZW Decompression Algorithm

1: Read OC = OLD CODE

2: if OC is not EOF then

3: output OC

4: CHARACTER = OC

5: while there are still input characters do

6: Read NC = NEW CODE

7: if NC is in not DICTIONARY then

8: STRING = get translation of OC

9: STRING = STRING + CHARACTER
10: else

11: STRING = get translation of NC

12: end if

13: output STRING

14: CHARACTER = first character in STRING

15: add OC + CHARACTER into the DICTIONARY

16: OC = NC

17: end while

18: Output string for code

19: end if

IV. IMPLEMENTATION

4.1 Appending frequently encountered string patterns to the

dictionary

The results obtained after applying techniques which is

explained in section IV is tabulated as follows:

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 4, Issue 10, ISSN No. 2455-2143, Pages 141-144
 Published Online February 2020 in IJEAST (http://www.ijeast.com)

144

Original file

size
Compressed file size Compression ratio

2 Kb 1.35 Kb 1.489

3 Kb 1.94 Kb 1.554

4 Kb 2.60 Kb 1.538

Fig 4.1 Appending frequently encountered string patterns

compression

V. CONCLUSION

An enhanced LZW algorithm is presented in this report. An

experimental result indicates that this algorithm performs

better than the existing LZW algorithm in terms of

compressed file size and compression ratio. Limitations of

this work include dictionary overflow with large files and

increased searching time.

VI. FUTURE WORK

The suggested future work is to reduce the size of the
character output of the LZW and make better use of the

dictionary.

VII. REFERENCES

[1] David Solomon. Data compression: The Complete

 reference book, Pub-SV 3rd Edition, 2004.

[2] Michael Dipper stein Lempel-Ziv-Welch (LZW)

 Encoding Discussion.

 http://michael.dipperstein.com/lzw/.

[3] R. Nigel Horspool. Improving LZW, IEEE, pages : 332-

 341, 1991.
[4] Christina Zeeh. The Lempel Ziv Algorithm, Seminar

 Famous Algorithms, 16th January, 2003.

[5] J. Abel, W. Teahan, Universal text preprocessing for data

 compression, IEEE Trans. Comput., 54 (2005), pp. 497-

 507.

[6] Ezhilarasu P,Karthik Kumar P,LZW Lossless Text Data

Compression Algorithm – A ReviewInternational Journal

Of Computer Science & Engineering Technology

(IJCSET, Vol. 6 No. 11 Nov 2015.
[7] H. Amri, A. Khalfallah, M. Gargouri, N. Nebhani, J.-C.

Lapayre, M.-S. Bouhlel Medical image compression

approach based on image resizing, digital watermarking

and lossless compression, J. Signal Process. Syst., 87

(2017), pp. 203-214.

[8] Simrandeep kaur, V.Sulochana Verma, Design and

Implementation of LZW Data Compression Algorithm,

International Journal of Information Sciences and

Techniques (IJIST) Vol.2, No.4, July 2012

 [9] Sawsan A. Abu Taleb , Hossam M.J. Musafa , Asma’a

 M.Khtoom Improving LZW Image Compression,

 European Journal of Scientific Research 1450-216X
 Vol.44 No.3 (2010), pp.502-509.

[10] Evon Abu-Taieh1, Issam AlHadid, A New Lossless

 Compression Algorithm, Modern Applied Science,

 Canadian Center of Science and Education, Vol. 12,

 No. 11, 2018.

[11] Restu Maulunida*1, Achmad Solichin, Optimization of

 LZW Compression Algorithm With Modification of

 Dictionary Formation, Indonesian Journal of

 Computing and Cybernetics Systems) Vol.12, No.1,

 January 2018, pp. 73~82.

[12] J.Uthayakumar,T.Vengattaraman,P.Dhavachelva, A
 survey on data compression techniques: From the

 perspective of data quality, coding schemes, data type

 and applications, Journal of King Saud University -

 Computer and Information Sciences, 2018.

