
 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 1, ISSN No. 2455-2143, Pages 134-138
 Published Online May 2020 in IJEAST (http://www.ijeast.com)

134

A REVIEW ON JAVA HASHMAP AND

TREEMAP

Dinesh Bajracharya

Kantipur College of Management and Information Technology,
Kathmandu, Nepal

Abstract - Developing robust, efficient software

applications is complicated a task. In built

collections available in programming languages

are of great value for developing efficient and

robust software applications. Java inbuilt

collections HashMap and TreeMap are very

efficient tools for improving search time in the

programs and having understanding about the

underlying data structures of these collections is of

great value. HashMap is based on the concept of

hashing and TreeMap based on Red-Black tree.

This article provides basic understanding about

HashMap and TreeMap and highlights the

situations where HashMap should be used and

where TreeMap should be.

Keywords: HashMap, TreeMap, HashTable, Red-

Black Tree, ResultSet

I. INTRODUCTION

Proper organization of data in software applications is

very necessary for easy access and modification of

data. Unorganized data will be just result in wastage

of time during search and modify processes. Several

Data structures are defined for organizing data such

that search and modify process can be performed in

acceptable time [4]. Data structure serves as Abstract

Data types (ADT). Abstract Data Type specifies

logical organization of data while data structure is

physical organization of data [5]. Data structures like:

Stack, Queue, Linked list, HashTable, Tree, Graph can
be used to organize data for fast access and easy

manipulation. Operations like insertion, deletion,

manipulation, searching etc. can be performed easily

on those data structures. These data structures help to

improve performance software and help programmers

to save their software development time.

Programming languages like C/C++, Java, Python, C#

have several inbuilt classes or collection based on

theory of data structures like stack, queue, linked list,

hashtable, tree. These inbuilt collection objects can be

used to develop robust software easily and free

programmers from burden of devoting time

developing data structures on their own. Benefits of

those collections can be understood by understanding

the underlying data structure on which implementation

of those collections are based.

Different collection objects can be used for same

purpose, that is to store data and perform search, edit

operations. But the performance of considered

collection may differs from each other and having

knowledge of their performances will be of great value

[1]. This article focuses to understand how Java inbuilt
collections: HashMap and TreeMap perform with real

data and which one is better choice in what type of

situation.

II. THEORIES

Hashing

Hashing is a technique of distributing elements in an

array such that elements can be searched in O(1) time.

Hashing uses hash function to map elements in the
array, this function takes elements as input and

generates integer value which corresponds to the

position for the element in the array. Same hash

function is used to find the position of the element. A

good hash function will distribute elements evenly in

the array [2].

Creating a hash function which can distribute elements

evenly in an array is challenging task as it is very

possible that two or more elements hash to the same

position in the array, that is the position generated by

the hash function for two or more elements is same.

This situation is known as hash collision.

Several techniques like division method,

multiplication method are developed for generating

hash value. These methods generate hash value for

elements in the hash table (hash table is like an

ordinary array). A hash table has j number of slots

(buckets) for ‘m’ number of elements, j takes values

0,1,2,…..,n, where n is the size of table. Hash value
generated for an element will be among the values of

j. A value generated for an element will be its location

in the hash table. Collision occurs when two elements

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 1, ISSN No. 2455-2143, Pages 134-138
 Published Online May 2020 in IJEAST (http://www.ijeast.com)

135

hash to same value. To reduce collision, secondary

hash table Sj can be created. This secondary hash table

Sj corresponds to the jth slot of the primary hash table.
If an element hashes to slots j of primary table, it will

be stored in the Sj, the secondary hash table. All the

elements with hash value j will be stored in Sj. Here

two different hash functions will be used, first (outer

hash function) one to get slot value in primary table

then another (inner hash function) to get hash value in

secondary hash table [11].

Generally, hash table stores key, value pairs; key

represent identifier for the value, and value can be

simple data or complex object. Hash Table contains

primary and secondary tables to reduce collisions. The

performance of hash table depends on two factors:

load factor and capacity. Capacity is the size of

primary hash table (that is number of slots in primary

table) and load factor, α, is average number of

elements stored in each slot.

Hash Table performs in constant time, O(1) for

insertion, search, delete operations. Hash table with a

good hash function performs very fast if the number of

slots is more than keys.

Red-Black Tree:

A red black tree is a binary search tree in which node

is colored either red or black. A node includes five

fields for storing information color value of a node,

reference to right and left children, value of key and

pointer to parent node. Red-black tree is a balanced

tree as any path of red-black tree is not more than twice

as long as any other path [7].

A binary search tree is a red-black tree if it satisfies the

following red-black properties:

- a node is either red or black in color

- root is black

- Every leaf (NIL) is black

- If a node is red, then both of its children are

black

- For each node, all paths from the node to
descendent leaves contain the same number

of black nodes.

Height of a Red-Black tree is not more than 2lg(n+1)

where n is this number of internal nodes in the tree.

Any element in a tree can be searched in O(lgn) time

and Insertion and deletion of keys can be done in

O(lgn) time [10]. Elements in Red-Black tree are

stored in the natural ordering of the elements and there

is no wastage of storage space in Red-Black tree.

Java HashMap

HashMap is in-built collection in Java based on Hash

table implementation. The implementation results in

constant-time performance for get (retrieving values)
and put (storing values) operations. Time required to

iterate through the HashMap is proportional to the

capacity of the HashMap instance plus its size.

Performance of a HashMap instance is affected by two

parameters: initial capacity and load factor. The

capacity specifies the number of buckets in the hash

table and the load factor is a measure which provides

number of elements to store in the hash table (how full

is hash table) before its capacity is automatically

increased [10]. HashMap allows one null key and any

number of null values. HashMap does not allow

duplicate keys and each key can be associated or

mapped to only one value [6].

Default value of load factor is 0.75 (lies between 0 and

1) and default capacity is 16. Higher value of load

factor means less wastage of memory space but slow
performance; lower value of load factor results in

efficient performance with more wastage of memory.

HashMap entry contains pairs of key and value, int

hash of the key and a pointer to the next entry. Each

entry occupies 32 bytes (12 bytes header+ 16 bytes

data + 4 bytes padding) memory space. HashMap of

size ‘S’ will occupy 32 * S bytes for entries storage. In

addition, it will use 4 * C bytes for array entries, ‘C’ is

the map capacity. A HashMap instance will occupy 32

* SIZE + 4 * Capacity bytes, but theoretically, its size

limit could be equal to 8 * Size bytes (2 arrays of keys

and values with no space wasted) [13].

Java TreeMap

TreeMap is in-built data structure based on a working

principle of Red-Black tree. TreeMap stores key, value

pairs. Data in the TreeMap is ordered according to the

natural ordering of its keys. Several methods are

defined in TreeMap and methods containsKey (for

searching key), get (getting values for supplied key)
and put (storing keys, values) are guaranteed to

execute in log(n) time. TreeMap cannot have null key,

but allows multiple number of null values [9].

Each node of Red-Black tree contains key, value,

pointers to left and right children, pointer to parent and

a Boolean color flag. A node occupies 12 bytes for

header, 20 bytes for five object fields and 1 byte for

the flag; in total 40 bytes including 7 bytes for

alignment. The total memory consumed by a TreeMap

is 40 + SIZE bytes, and this is approximately same as

the memory requirement for a HashMap. In case of

CPU time consumption, TreeMap is worse than

HashMap provided the load factor of HashMap is

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 1, ISSN No. 2455-2143, Pages 134-138
 Published Online May 2020 in IJEAST (http://www.ijeast.com)

136

enough small. But TreeMap is better in finding next,

previous entries [13].

Lots of methods for TreeMap and HashMap are

similar and methods considered for study are:

 public v replace(K key, V value): This

method is used to replace value of specified

key. This method takes two parameters: first

is key element for which value is to be

replaced, second is the new value for the key.

It returns previous value of the provided key

or returns null if provided key is not mapped
to the map.

 remove(Key): Remove method removes

value mapped for the particular key from the

map. This method takes one parameter, that

is, key for which mapped value is to be

removed. It returns previous value for the

provided key if key exists otherwise returns

null.

 get(): To retrieve the value mapped by a

specific key in the map, get() method is used.

It takes key as parameter for which value is
to be retrieved. It returns null if the map has

no value mapped for the provided key.

 containsKey(): This method is used to see if

provided key is mapped in the map or not. It

takes the key element and returns true if the

element is mapped in the map. It returns true

if key is present otherwise false.

 Put(): To insert key, value pair in the map,

put method is used. If key exists in the map,

old value will be replaced by new value for

the provided key. It returns null on passing
new key, value and returns previous value on

passing existing key.

System.nanoTime

This method returns the current value of the most

precise available system timer in nanoseconds [12].

This method provides nanosecond precision, but not

necessarily nanosecond resolution. This method can

be used to measure time taken by a program, method,
a block of statement, or a statement. Following

pseudocode shows how to measure time taken by code

to execute:

long t1 = System.nanoTime();
///code

long t2 = System.nanoTime();

long duration = t2 – t1; ////(time

take to execute by code)

III. RELATED STUDY

Lucas PenzeyMoong has found that HashMap does

insertion and search operation in constant time but

performance of HashMap can be affected by the size
of structure which grows over time. Two factors that

affect the performance of HashMap are: load and

capacity. Capacity means the number of buckets

(slots) created by the hashing function and load means

fullness of each bucket. More buckets will be created

as the number of elements in the structure grows. Java

HashMap preforms well if the load is less than 75%,

this results in over-allocation of memory than required

by the HashMap. A TreeMap guarantees logarithmic

cost (O(lg(n)) for insertion, search operations and its

performance are directly related with the height of the

tree. TreeMap should be used if number of elements
are not known in advance as there is no wastage of

memory, but if speed is main concern HashMap is

better choice [8].

HashMap uses hash function to organize and store
elements on the array-based data structure. Most of

operations like put, get, contains, remove are

performed in constant time of O(1). HashMap does not

maintain order of elements and is not possible to

search max, min, next, pervious elements in HashMap.

HashMap suffers from memory wastages as it uses

more memory than required to hold data. TreeMap

does not wastage memory space, it takes O(log(n))

time to perform put, get, contains and remove

operations and maintains natural order of the elements.

Both TreeMap and HashMap do not support duplicate
keys. If sufficient memory space is available and faster

operations is requirement then HashMap is better

option than TreeMap; but if memory space is limited,

elements are added and removed quite frequently and

natural ordering of keys is important then TreeMap

should be considered [3].

IV. EXPERIMENTAL AND RESULTS

Programs were developed with HashMap and
TreeMap collections, MySQL database was used as

data source to populate considered collections, Java’s

in-built System.nanoTime() method was used to

record execution time of considered methods of the

collections. Several tests were performed: first with

four different sets of data to perform load, get,

containskey, put, remove operation for both HashMap

and TreeMap objects and second with five sets

containing randomly generated records for

performaning get, containsKey, put, remove, and

replace operations for both HashMap and TreeMap

object.

Data for the experiment was first extracted from

MySQL database, then stored in ResultSet object and

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 1, ISSN No. 2455-2143, Pages 134-138
 Published Online May 2020 in IJEAST (http://www.ijeast.com)

137

from ResultSet oject loaded to HashMap and TreeMap

objects. Separate programs were written for HashMap

and TreeMap.

Java in-built method nanoTime() of System class was

used to record execution time of each considered

operations. For each operation start time (before start

of execution) and end time (immediately after the

execution of operation completed) were recorded and
difference between two is the duration of time required

for the execution of the method.

Table 1. Execution time (in nanoSeconds) for get, containsKey, put, remove operatons with first set of records

HashMap

To

Records

Number of

records

searched get() ContainsKey() put() remove()

Set I 210000 50 787.8049 2004.878 1820 6424

Set II 210000 50 966.66 1500 2300 10500

Set III 210000 50 991.07 1760.71 1080 7600

Set IV 210000 50 950 1187.5 1320 8767

TreeMap

Set I 210000 50 2066 1997.56 4320 13324

Set II 210000 50 2133 1633 5320 21625

Set III 210000 50 2760 2750 3020 16933.33

Set IV 210000 50 3416.36 3187.27 3200 19933.33

Table 2. Execution time (in nanoSeconds) for put, get, containsKey, remove, replace operations with randomly

generated records

HashMap

Total

records

Number of

Records

Searched

Time taken

to load data get() containsKey() put() remove() replace()

 Set I 2000 100 18119500 689 753 1200 3000 2410

 Set II 5000 200 28556400 672.5 848.5 1720 2820 1880

 Set III 10000 500 34011700 632.2 1021 3580 2660 1740

 Set IV 20000 1000 128072800 672.3 689 720 3760 2220

 Set V 139318 2000 806737700 664.15 788.7 1040 4520 1700

TreeMap

 Set I 2000 100 3.76714+E 1625 1280 1420 5660 2910

 Set II 5000 200 3.77+E 1631.5 1558 2960 5870 2680

 Set III 10000 500 3.76712+E 1437.4 1136 1780 6530 2500

 Set IV 20000 1000 3.77115+E 2150.1 1832 2720 10280 3410

 Set V 139318 2000 3.76716+E 1807.05 1296 3040 7040 2610

V. DISCUSSION

The experimental results depicted in Tables 1 and 2
showed that HashMap collection of Java which is

based on the hashing technique is superior than

TreeMap collection based on the Red-Black tree for all

five considered methods. For HashMap collections,

get method was found faster than containsKey

method, but opposite was true for TreeMap for same

sets of data and different sets of data. Get method of

HashMap was very fast than get method of TreeMap

but for other operations differences between two were

not seen to be very big for same set of data but seen

better performance in HashMap for different set of

data. Loading HashMap with any size data was very

fast in HashMap than TreeMap. Get method used to

search key was seen to be consistent even with

increase in the number of search keys for HashMap.

Load time for HashMap increases with increase in

number of records, but that was not the case TreeMap

object.

The result of this study is found to be consistent with

results shown in the related studies. HashMap

implementation based on hashing technique if superior

 International Journal of Engineering Applied Sciences and Technology, 2020

 Vol. 5, Issue 1, ISSN No. 2455-2143, Pages 134-138
 Published Online May 2020 in IJEAST (http://www.ijeast.com)

138

for storing, deleting, searching operations than

TreeMap.

These collections HashMap and TreeMap will be of

great value in improving performance of programs

written in Java. Searching data in the Java ResultSet

object is a slow process as search has to be peformed

sequentially. So, loading data into any one collection
object (HashMap or TreeMap) will result in efficient

performance. The choice of the in-built collection

depends on the need of the users, space and ordering

vs speed.

VI. CONCLUSION

Java collections like HashMap and TreeMap are of

great value, these collections help to develop efficient

programs easily and gain efficiency in searching.

HashMap which is based on the theory of Hashing is

definitely superior for search, insert, remove, replace

operations than TreeMap based on the concept of Red-
Black tree. But if data is required in ordered format

and searching back and forth according to the natural

order of objects, then TreeMap is best choice

compared to HashMap.

VII. REFERENCES

[1] Johari A., (2020), Java Collections - Interface,

List, Queue, Sets in Java With Examples. Retrieved

from edureka: https://www.edureka.co/blog/java-

collections/

[2] Drozdek A., (2000), Data Structures and
Algorithms in Java. New Delhi: Thomson Learning

Brooks/Cole.

[3] Baeldung, 2020, Java TreeMap vs HashMap.

Retrieved from Badeldung:

https://www.baeldung.com/java-treemap-vs-hashmap

[4] Kruse L.R., Leung P.B.,Tondo L.C., (2000), Data

Structures and Program Design in C, New Delhi:

Prentice-Hall of India

[5] Yedidya Ll, Moshe J. A., Aaron M.T., (1998), Data

Structures using C and C++, New Jersey: Prentice-

Hall, Inc.
[6] Vogel L., (2019), Java Collections - Tutorial.

Retrieved from Vogella:

https://www.vogella.com/tutorials/JavaCollections/ar

ticle.html

[7] Morris J., (2020), Red-Black Trees,

https://www.cs.auckland.ac.nz/software/AlgAnim/red

_black.html

[8] Lucas P., (2019), Navigating Java Maps: TreeMap

vs. HashMap vs. Linked HashMap. Retrieved from

Medium: https://medium.com/swlh/navigating-java-

maps-treemap-vs-hashmap-vs-linked-hashmap-

c97e6d248ecf
[9] Java Platform, (2020), TreeMap (Java™ Platform,

Standard Edition 8). Retrieved from Java™ Platform,

Standard Edition 8

[10] Java Platform, (2020), HashMap (Java™

Platform, Standard Edition 8). Retrieved from Java™

Platform, Standard Edition 8:

https://docs.oracle.com/javase/8/docs/api/overview-

summary.html

[11] Cormen H.T., Leiserson E.C., Rivest L. R., Stein

C., (2002), Introduction to Algorithms. MA: Prentice-

Hall of India Private Limited.

[12] TutorialsPoint, (2020),
Java.lang.System.nanoTime() Method. Retrieved from

TutorialsPoint Simplyeasylearning:

https://www.tutorialspoint.com/java/lang/system_nan

otime.htm

[13] Mikhail V., (2013), Aayushi, J. (2020, Feb 27).

Java Collections - Interface, List, Queue, Sets in Java

With Examples. Retrieved from edureka:

https://www.edureka.co/blog/java-collections/

https://www.vogella.com/tutorials/JavaCollections/article.html
https://www.vogella.com/tutorials/JavaCollections/article.html
https://docs.oracle.com/javase/8/docs/api/overview-summary.html
https://docs.oracle.com/javase/8/docs/api/overview-summary.html

