

 International Journal of Engineering Applied Sciences and Technology, 2019

 Vol. 4, Issue 1, ISSN No. 2455-2143, Pages 132-136
 Published Online May 2019 in IJEAST (http://www.ijeast.com)

132

AUTOMATED WEB VULNERABILITY

SCANNER

Rahul Maini

Department of Computer

Engineering

BVDUCOEP, Pune,

Maharashtra, INDIA

Rahul Pandey

Department of Computer

Engineering

BVDUCOEP, Pune,

Maharashtra, INDIA

Rajeev Kumar

Department of Computer

 Engineering

BVDUCOEP, Pune,

 Maharashtra, INDIA

Rajat Gupta

Department of Computer

Engineering

BVDUCOEP, Pune,

Maharashtra, INDIA

Abstract— In this era, when the time and

internet has evolved, the web application threats

have increased by ten folds. The cause of the

web vulnerabilities are still due to the lack of

input validation. This causes the CIA

(Confidentiality Integrity and Availability)

Triad Model to break. To solve this, we develop

a scanner for finding common vulnerabilities in

web applications including SQL Injection,

Cross-Site-Scripting (XSS), CRLF Injection,

and Open Redirect. It also include a simple port

scanner along with a web crawler module which

helps to identify other services which may be

running on the web server. In this paper, we

introduce a simple black-box security test

technique for finding these issues. At the end of

the paper, we demonstrate how easy it is to scan

a complex enterprise-grade web application

with our scanner. The main goal of the scanner

is to uncover the vulnerabilities and produce a

better result/report of each web application in

effective manner.

Keywords— SQL Injection, XSS, CRLF

Injection, Open Redirect, Web application

vulnerability, Port Scanner, Web Crawler, Web

Scanner tool

I. INTRODUCTION

Web Applications are continuously emerging and

largely prevalent critical piece of our daily lives.

The Web technology stack, the languages,

frameworks etc. have improved a lot. However, the

security of web application is still basic proposed

by Marcus Pinto et al [1]. Security is never thought

of while developing an application. The term

vulnerability is a weakness or a shortcoming in a

piece of software that allows a threat actor to harm

or destroy the respectability of a system. The Most

Common Vulnerabilities present in Web

Applications as of 2019 are: Cross Site Scripting

(XSS), SQL (Structured Query Language)

Injection, Carriage Return Line Feed (CRLF)

Injection, Open Redirects and others. Even after a

noteworthy period of existence, these

vulnerabilities still do not cease to exist. Exploiting

these vulnerabilities are also very simple and easy

for a threat actor. Identifying vulnerabilities for the

most part is not an easy task, and not many basic

vulnerabilities can be effectively identified via

automated scanners proposed by V. Suhina et al

[7].

Most of the software bugs in web application are a

result from an invalid input sanitization proposed

by David Shelly et al [2][4]. These vulnerabilities

may be SQL injection, Cross-Site Scripting,

Carriage Return Line Feed Injection, Open

Redirect. Although the dominant part of web

vulnerabilities are straight-forward and to maintain

a calculated distance from, numerous web

designers are, shockingly, not security-mindful.

Consequently, there exist an expansive number of

vulnerable applications as well as websites on

World Wide Web. Most important ways to deal

with testing programming applications for the Web

Applications are static (white-box) and dynamic

(black box) as well as gray-box approach.

In Black Box based Security testing, only high-

level of information is made available to testers

such as URL or address of the organization to

perform penetration testing. Here, tester may see

himself as a hacker who is unaware of the

system/network. Black box testing is a time

consuming approach as the tester is not cognizable

of system/network‟s attributes and he/she will need

considerable amount of time to explore system‟s

properties and details. Further, this approach of

testing may result into missing out of some areas,

keeping in view limited time period and

information. proposed by University of Zagreb et al

[8]

At the end, we present that how the port scanner

finds the services running on the server and open

ports, how the web crawler module work into the

identification of endpoints and paths or how the

scanner implements to sidestep the verification of

web application and recognize web application

helplessness existed in them by re-enacting web

assaulting and investigating the information of

reaction. In the scanner module, we send specially

crafted payloads for identifying vulnerable web

 International Journal of Engineering Applied Sciences and Technology, 2019

 Vol. 4, Issue 1, ISSN No. 2455-2143, Pages 132-136
 Published Online May 2019 in IJEAST (http://www.ijeast.com)

133

application for each supported vulnerability class

and based on the response given by the web server,

we identify if the web application is vulnerable to a

specific attack or not i.e. SQL Injection, XSS,

CRLF Injection or Open Redirect proposed by

Antunes et al.[9]

II. VARIOUS WEB VULNERABILITIES

2.1 SQL Injection Attack

SQL-injection (SQLI) attacks works by injecting

strings into SQL queries that change their planned

use. This can happen if different website doesn't

use proper user input proposed by Acunetix et al

[3]. The attacker is able to manipulate the query if

the application is vulnerable to SQLI, the attacker

could extract information from the database, Insert,

Update, Delete or modify the information stored

across the database, tables and columns.

 SELECT * from tbl_login WHERE

email='xyz@xzy.com' AND password=

'12345secret';

This kind of SQL query is mostly used to verify

user authentication. So attacker mostly targets this

type of SQL query. If we consider query, it will

check if the email and password matches and

returns the matched rows, if the rows are returned

then user is considered to be authenticated. Now

suppose client enter email and password in to input

field, query look like following.

SQL-Query = "SELECT * from tbl_login

WHERE email=''+email+'' AND password=

''+password+''"

In web application code if developer does filter the

user input then attacker can inject some SQL

queries which might alter its meaning in case of

executing SQL query. For example: anyone can

insert email and password like following.

 Email: ' OR 1=1 --

 Password : <empty>

Using the provided form data, the

vulnerable web application constructs a dynamic

SQL query for authenticating the user as shown in

SELECT * from tbl_login WHERE email='' OR

1=1 -- ' AND password= '';

In SQL-query, the single quote(') is used

to break the query and OR 1=1 will make the

running query TRUE and '-- ' characters at end are

SQL comments which causes the rest of the query

to be ignored. So whenever database engine

executing this type of query it returns all user data,

means its valid login for that email.

2.2 Cross-Site-Scripting (XSS) Attack

XSS or Cross-Site-Scripting is a Client-Side

Security Vulnerability which affects a victim's

browser. An attacker can inject client-side script in

input fields of web application. If the attacker is

able to input HTML tags and they are reflected as

is in the output then attacker could inject

JavaScript in the victim's browser by sending the

vulnerable URL to the Victim.

Cross-Site-Scripting is of three types:

1. Reflected XSS

2. Stored XSS

3. DOM based XSS

The most widely recognized attack in web

application is Reflected XSS.

Reflected XSS: The web server reflects the user

input directly into the web server response without

sanitizing the user input. eg. In a search field of a

web application

Stored XSS: In this case, the Invalidated User

Input is permanently stored into the Database of

the web application and it‟s reflected un-sanitized

from the database in the response. The attack

surface of this type of XSS is more than reflected

XSS. e.g. XSS in posts or comments sections of a

web application.

DOM Based XSS: This happens when the user

input (source) is extracted via JavaScript and put

into the DOM of the web page via some dangerous

HTML sinks. e.g. XSS via URI fragment (after '#'

in the URL)

For example if any client enter string

"TEST".So whenever client search with

these HTML tags, result might come from server

that “no matches found for TEST” (here string

'TEST' is shown in bold letters). This means since

we are able to inject HTML tags. We could inject

<script> tags and execute arbitrary JavaScript in

the Victim's browsers which allows us to steal the

Victim user's Cookies or make requests on his

behalf without him knowing about it and hence

steal his session.

Example:

<script>location.href='http://attackerserver.com

/?'+document.cookie;</script> Injecting this

string would send the victim's Cookies to attacker

controlled server which attacker could reuse again

to authenticate to victim's account without his

username or password

 International Journal of Engineering Applied Sciences and Technology, 2019

 Vol. 4, Issue 1, ISSN No. 2455-2143, Pages 132-136
 Published Online May 2019 in IJEAST (http://www.ijeast.com)

134

2.3 CRLF Injection Attack

When a browser sends a request to a web server,

the web server answers back with a response

containing both the HTTP headers and the actual

website content. The HTTP headers and the HTML

response (the website content) are separated by a

specific combination of special characters, namely

a carriage return and a line feed. For short they are

also known as CRLF.

The server knows when a new header begins and

another one ends with CRLF, which can also tell a

web application or user that a new line begins in a

file or in a text block.

Since the header of a HTTP response and its body

are separated by CRLF characters an attacker can

try to inject those. A combination of

<CRLF><CRLF> will tell the browser that the

header ends and the body begins. That means that

he is now able to write data inside the response

body where the html code is stored. This can lead

to a Cross-site Scripting vulnerability.

An example of HTTP Response Splitting leading to

XSS:

Imagine an application that sets a custom header,

for example:

X-Language: en_US

The value of the header is set via a get parameter

called "lang". If no URL encoding is in place and

the value is directly reflected inside the header it

might be possible for an attacker to insert the above

mentioned combination of <CRLF><CRLF> to tell

the browser that the request body begins.

That way he is able to insert data such as XSS

payload, for example:.

?lang=en_US%0d%0a%0d%0a<script>alert(do

cument.domain)</script>

The above will display an alert window in the

context of the attacked domain. Moving on,

JavaScript could send the victim's Cookies to

attacker controlled server which attacker could

reuse again to authenticate to victim's account

without his username or password

2.4 Open Redirect Attack

One of the most common and largely overlooked

vulnerabilities by web developers is Open Redirect

(also known as "Unvalidated Redirects and

Forwards"). A website is vulnerable to Open

Redirect when parameter values (the portion of

URL after "?") in an HTTP GET request allow for

information that will redirect a user to a new

website without any validation of the target of

redirect.

An example of a vulnerable website link could

look something like this:

https://www.example.com/login.html?RelayState=

http%3A%2F%2Fexample.com%2Fnext

In this example, "RelayState" parameter indicates

where to send user upon successful login (In our

example it is "http://example.com/next"). If

website doesn't validate the "RelayState" parameter

value to make sure that target web page is

legitimate and intended, attacker could manipulate

that parameter to send a victim to a fake page

crafted by attacker:

https://www.example.com/login.html?RelayState=

http%3A%2F%2Fattacker.com

Open Redirect vulnerabilities don't get enough

attention from developers because they don't

directly damage website and do not allow an

attacker to directly steal data that belong to the

company. However, that doesn't mean that Open

Redirect attacks are not a threat. One of the main

uses for this vulnerability is to make phishing

attacks more credible and effective.

When an Open Redirect is used in a

phishing attack, the victim receives an email that

looks legitimate with a link that points to a correct

and expected domain. What the victim may not

notice, is that in a middle of a long URL there are

parameters that manipulate and change where the

link will take them. To make identification of the

Open Redirect even more difficult, redirection

could take place after victim provides login on a

legitimate website first. Attackers have found that

an effective way to trick a victim is to redirect him

to a fake website after they enter their credentials

on a legitimate page. The fake website would look

identical to a legitimate website, and it would ask

the victim to re-enter their password. After the

victim re-enters their password it would be

recorded by the attacker and victim would be

redirected back to a valid website. If done

correctly, victim would think that he mistyped

password once and would not notice that his

username and password were stolen.

III. METHODS TO IDENTIFY

3.1 SQL Injection (SQLI)

In this category of Scanner module we try to

identify SQL Injection attacks using some basic

SQL Injection Payloads which helps us to check

whether the application responds to the SQL

queries or not i.e. if the application is vulnerable to

 International Journal of Engineering Applied Sciences and Technology, 2019

 Vol. 4, Issue 1, ISSN No. 2455-2143, Pages 132-136
 Published Online May 2019 in IJEAST (http://www.ijeast.com)

135

SQLI or not proposed by Katkar Anjali S and

Kulkarni Raj et al [5]

BOOLEAN BASED SQL INJECTION

In this type of SQL Injection we try to detect SQLI

on the basis of the response returned from the

server. Our scanner detects a difference between a

TRUE and a FALSE response and based on that we

find if SQL Injection is present or not.

Some Boolean Based SQLI Payloads:
⦁ 999999 or 1=1 or 1=1

⦁ ' or 1=1 or '1'='1

⦁ " or 1=1 or "1"="1

⦁ 999999) or 1=1 or (1=1

⦁ ') or 1=1 or ('1'='1

⦁ ") or 1=1 or ("1"="1

⦁ 999999)) or 1=1 or ((1=1

⦁ ')) or 1=1 or (('1'='1

⦁ ")) or 1=1 or (("1"="1

⦁ 999999))) or 1=1 or (((1

⦁ '))) or 1=1 or ((('1'='1

⦁ "))) or 1=1 or ((("1"="1

TIME BASED SQL INJECTION

In this type of SQL Injection we try to detect SQLI

on the basis of the time delays in the response

returned from the server. Our scanner detects a

difference between a TRUE and a FALSE response

based on the time delays introduced by successful

evaluation of sleep() or similar functions

depending on the DBMS.

Some Time Based Blind SQLI Payloads:

⦁ 999999 or sleep(10) or 1=1

⦁ ' or sleep(10) or '1'='1

⦁ " or sleep(10) or "1"="1

⦁ 999999) or sleep(10) or (1=1

⦁ ') or sleep(10) or ('1'='1

⦁ ") or sleep(10) or ("1"="1

⦁ 999999)) or sleep(10) or ((1=1

⦁ ')) or sleep(10) or (('1'='1

⦁ ")) or sleep(10) or (("1"="1

⦁ 999999))) or sleep(10) or (((1

Step 1. Parse the HTML Response of the URL to

scan and extract all „name‟ attributes from the

„input‟ tags

Step 2. Try fuzzing all the parameters with the

SQL Injection payloads and check if the server

responded correctly given the SQL query based on

the HTTP Response or the Response Time.

3.2 Cross-Site-Scripting (XSS)

In this submodule of Scanner, we are trying to

detect HTML Injections and XSS vulnerabilities

using some XSS payloads. The basic approach

used to identify this class of vulnerability is, we

insert HTML Tags into every possible input fields

in the page as well as query string parameters(if

any) and try to see if the Tags are reflected as is, in

the HTTP Response. If the tags are reflected

Invalidated we could confirm that application is

vulnerable to XSS explained by Jeremiah

Grossman et al [6].

Step 1. Parse the HTML Response of the URL to

scan and extract all „name‟ attributes from the

„input‟ tags

Step 2. Try fuzzing all the parameters we extracted

with HTML Tags and XSS Payloads.

Step 3. If the response contained un-sanitized

HTML Tags or our XSS payloads then the

application is vulnerable to XSS.

3.3 CRLF Injection

In this part, we try to find if the user input is

reflected inside the HTTP Response Headers and if

we are able to insert un-encoded sequence of

Carriage Return and Linefeed i.e. \r\n or %0D%0A

which allows us to inject arbitrary HTTP Response

Headers and by injecting 2 sequence of <CR><LF>

we are able to inject directly into their response.

Step 1. Parse the HTML Response of the URL to

scan and extract all „name‟ attributes from the

„input‟ tags

Step 2. Try fuzzing all the parameters we extracted

with <CR><LF> sequence

Step 3. If the HTTP Response headers contains the

un-encoded our new header that we injected via

CRLF then the application is vulnerable to CRLF

3.4 Open or Invalidated Redirect
In this sub-module, we try to fuzz parameters by

sending a URL to a website and check if there is a

3XX HTTP response code and compare the

Location HTTP Response Header with the

parameter we sent.

Step 1. Parse the HTML Response of the URL to

scan and extract all „name‟ attributes from the

„input‟ tags which have a HTTP GET Method

Step 2. Try fuzzing all the parameters we extracted

with a URL and check if there is a HTTP Redirect

in the Response.

IV. CONCLUSION

The Major contribution to this Web Scanner is to

demonstrate the ease and the simplicity of

 International Journal of Engineering Applied Sciences and Technology, 2019

 Vol. 4, Issue 1, ISSN No. 2455-2143, Pages 132-136
 Published Online May 2019 in IJEAST (http://www.ijeast.com)

136

identifying common security vulnerabilities in web

applications. The tool has been built in such a way

that it can be easily upgraded to add many more

functionalities. In this regard, following is the

summary of some of the future works that can be

done for enhancing the tool. In this regard,

following is the summary of some of the future

works that can be done for enhancing the tool.

1. Apart from detecting the current vulnerabilities,

more modules can further be added for the

detection of other major vulnerabilities such as File

Inclusion, XXE, Insecure Deserialization, Buffer

overflows, OS command injections etc.

2. Modules for penetration testing of these

vulnerabilities can also be added to make it more

powerful.

3. The algorithms and techniques currently used

can be modified or replaced to more advanced and

efficient ones for better accuracy of results. 4. Port

scanner can be made threaded to enhance the speed

and efficiency of the scan.

V. REFERENCE

1. Dafydd Stuttard , Marcus Pinto “The Web

application Hacker‟s Handbook Finding an

Exploiting Security Flaws “ second edition ©2011

2. David Shelly, Randy Marchany, Joseph Tront

“Closing the Gap: Analyzing the Limitations of

Web Application Vulnerability Scanners” Virginia

Polytechnic Institute and State University

3. Acunetix Ltd. Acunetix Web Vulnerability

Scanner. http://www.acunetix.com/, 2005.

4. David Shelly, Randy Marchany, Joseph Tront

“Closing the Gap: Analyzing the Limitations.

5. Katkar Anjali S and Kulkarni Raj B, “Web

Vulnerability Detection and Security Mechanism”,

International Journal of Soft Computing and

Engineering(IJSCE),ISSN: 2231-2307, Volume-2,

Issue-4, p.-237-241

6. Jeremiah Grossman WhiteHat Security founder &

CTO “Website Vulnerabilities Revealed “

WhiteHat Security Stefan Kals, Engin Kirda,

Christopher Kruegel, and Nenad “ SecuBat: A Web

Vulnerability Scanner” Stefan Kals, Engin Kirda,

Christopher Kruegel, and Nenad Jovanovic Secure

Systems Lab, Technical University of Vienna.Nuno

Antunes and Marco Vieira , “Defending against

Web Application Vulnerabilities”,

7. V. Suhina, S. Groš and Z. Kalafatić, “ Detecting

vulnerabilities in Web applications by clustering

