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Abstract-- In this work, an adaptive formulation 

of the Legendre - Weighted Essentially Non-

Oscillatory (L-WENO) method is used to solve 

some problems of two-dimensional linear 

conservation laws on unstructured triangular 

mesh. The mesh adaptivity is used to improve the 

performance of the method. Although the results 

with the L-WENO method gets better as the mesh 

is refined, the mesh adaptation algorithm was 

able to improve the quality of the numerical 

approximation and reduce computational cost by 

refining and coarsening the computational mesh 

based on some specified criteria.  
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I. INTRODUCTION 

Adaptive methods play a very important role in 

many PDE solvers. These methods are useful 

particularly because in many PDE simulations for 

conservation laws, the solution in most of the 

domain is smooth with discontinuities occurring 

over just a fraction of the domain. In such problems, 

an efficient solution method can be a mesh 
refinement approach, where the grids are refined 

with the much smaller mesh spacing placed only 

where they are needed. A good adaptive method 

combines high order approximations in smooth 

regions of the solution together with mesh 

refinement near the singularities. This enhances the 

quality of the numerical approximation and 

decreases computational cost Tang and Tang [1]. 

Mesh adaptivity is essentially important for the 

efficient computation of finite volume methods. The 

presence of discontinuities and sharp gradients in the 
computation require separate resolutions in different 

sections of the computational domain. This can be 

attained with the use of adaptive methods. Aboiyar 

et al. [2]. Over the past few decades, there has been 

some important progress in developing moving mesh 

methods for PDEs. The moving mesh method for 

Hyperbolic systems Tang and Tang [1], the adaptive 

mesh refinement (AMR) based on the finite 

difference WENO scheme Shen et al. [3], a high 

order one-step ADER-WENO scheme with AMR in 

multiple space dimensions Dumbser et al. [4]. Other 

adaptive methods can be found in Colella et al. [5], 

Zhang el al. [6] and Li [7].  

In this work, we will implement an adaptive 
algorithm based on mesh refinement to the solution 

of two-dimensional conservation laws using the L-

WENO reconstruction presented by Soomiyol et 

al.[8]. 

 

II.  METHODS 

2.1 The L-WENO Reconstruction Procedure 

Consider the set 𝒫𝑛 which is a vector space of 

dimension 𝑁(𝑛) =
1

2
(𝑛 + 1)(𝑛 + 2). It was 

assumed that the computational domain Ω ⊂ ℝ2 is 

discretized by a conforming triangulation 𝒯, formed 

by the set 𝒯 = {𝑇ℓ}ℓ of triangles 𝑇ℓ ∈ Ω, ℓ =
1, … , #𝒯. In the finite volume structure, each triangle 

has a cell average value 

 �̅�ℓ =
1

|𝑇ℓ|
∫ 𝑢(𝑥)

 

𝑇ℓ
𝑑𝑥       (1) 

where |𝑇ℓ| is the area of the triangle 𝑇ℓ. 

In their reconstruction, the following problems were 
solved: 

Given the space of polynomials  𝒫𝑛 , and cell 

average values �̅�ℓ𝑘
 , 𝑘 = 1, … , 𝑁  

(where 𝑁 = dim 𝒫𝑛) of the function 𝑢 on each 

control volume 𝑇ℓ𝑘
 , find a polynomial 𝑝 ∈ 𝒫𝑛, that 

satisfies 

𝑝ℓ1
= �̅�ℓ1

, 𝑝ℓ2
= �̅�ℓ2

 ,…,𝑝ℓ𝑁
= �̅�ℓ𝑁

  

where the system has a unique solution if and only if 

the associated Vandermonde matrix is non-singular 

(Liu and Zhang, [9]). 

In their computation, they used three cells for linear 

reconstruction, six cells for quadratic reconstruction 

and ten cells for cubic reconstruction. 

with a basis function of the form  

𝑃𝑛(𝑥, 𝑦) = ∑ 𝑎𝑖𝑅𝑖(𝑥, 𝑦)𝑛
𝑖=0 = ∑ 𝑐ℓ,𝑚𝑥ℓ𝑦𝑚𝑛

ℓ+𝑚=0 (2) 
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where 𝑅𝑖(𝑥, 𝑦), 𝑖 = 0, 1, 2, … , n is the 𝑖𝑡ℎ degree 

two-variable Legendre polynomial and 𝑃𝑛 is a 

polynomial of degree 𝑛. 

They have, 

for 𝑛 = 1 

𝑃1(𝑥, 𝑦) = 𝑎0𝑅0(𝑥, 𝑦) + 𝑎1𝑅1(𝑥, 𝑦) = 𝑎01 −
𝑎1𝑥 + 𝑎1𝑦  = 𝑐1,001 + 𝑐1,10𝑥 + 𝑐1,01𝑦  

and in the same way 

𝑃2(𝑥, 𝑦) = 𝑐2,001 + 𝑐2,10𝑥 + 𝑐2,01𝑦 + 𝑐2,20𝑥2 +
𝑐2,11𝑥𝑦 + 𝑐2,02𝑦2 , 

 𝑃3(𝑥, 𝑦) = 𝑐3,001 + 𝑐3,10𝑥 + 𝑐3,01𝑦 + 𝑐3,20𝑥2 +
𝑐3,11𝑥𝑦 + 𝑐3,02𝑦2 + 𝑐3,30𝑥3 + 𝑐3,21𝑥2𝑦 +

𝑐3,12𝑥𝑦2 + 𝑐3,03𝑦3 .        (3) 

To ensure that the scheme is conservative, it needs to 

satisfy  

�̅�ℓ
𝑘 = �̅�ℓ  ,  ℓ = 1, … , 𝑁         (4) 

where N is the stencil size. 

On a cell 𝑇, the polynomial for each stencil 𝑆𝑖 is 

computed 

�̅�ℓ,𝑖
𝑘 =

1

|𝑇ℓ|
∫ 𝑃𝑘(𝑥, 𝑦)𝑑𝑥

 

𝑇ℓ
= �̅�𝑇ℓ

 , 𝑘 = 1, 2, 3   

 𝑙 = 1, 2, … , #𝑁𝑖         (5) 

where #𝑁𝑖 is the number of triangles in the stencil 

𝑆𝑖. Using (5) the coefficients for 𝑝𝑖
𝑘 on stencil 𝑆𝑖 is 

obtained. The WENO reconstruction is the weighted 

sum  

∑ 𝜔𝑖𝑃𝑖
𝑘(𝑥, 𝑦) 

𝑖   where 𝑖 = 1,2, … 𝑛   (6) 

where 𝜔𝑖   is the weight which is defined by  

𝜔𝑖 =
(𝜀+Ι𝑖)−𝜌

∑ (𝜀+Ι𝑖)−𝜌𝑘
𝑖=1

  

where 𝜀 is a small positive number to avoid division 

by zero, Ι𝑖 is the oscillation indicator for the 

polynomial in each stencil and 𝜌 is a measure of the 

sensitivity of the weights with respect to the 

oscillation indicator. The following values were 

used: 𝜀 = 10−6  and  𝜌 = 4 
 

Mesh Adaptation 

The adaptivity algorithm is implemented using the 

L-WENO method. An error indicator for each cell 𝑇 

in the triangulation 𝒯 is first identified and then the 

mesh adaptation is implemented, where the 

computational mesh is adaptively modified during 
the simulation based on the error indicator. This 

allows the optimization of storage used as well as 

computation time. 

Error indicator 

A suitable error indicator is what guides the design 

and implementation of any adaptive method. An 

error indicator is normally computed for each 

triangular cell 𝑇 and is used to determine if a cell lies 

within a region where the error of approximation is 

large. Elliptic and parabolic problems already have 

well established theories for error estimation as can 
be seen in Nochetto et al.[10], but there are no 

standard error estimates for nonlinear conservation 

laws. Instead, heuristic error indicators are used to 

determine regions where the solution possesses any 

shocks or steep gradients. Kurganov et al. [11] and 

Shen et al. [3] have presented some error indicators 

for the nonlinear case. 

In computing the error indicator 𝜀 of a triangulation 

𝒯, select a cell 𝑇 ∈ 𝒯 which has three neighbours 

𝑇1 , 𝑇2, 𝑎𝑛𝑑 𝑇3 . The error is computed for each cell 𝑇𝑖, 

i=1, 2, 3. 

For every 𝑇 ∈ 𝒯, the cell average �̅�𝑇  is used in the 

computation. The error for each neighboring cell is 

given as: 

𝜀𝑇1
= |�̅�𝑇 − �̅�𝑇1

|,  𝜀𝑇2
= |�̅�𝑇 − �̅�𝑇2

|, 𝜀𝑇3
= |�̅�𝑇 −

�̅�𝑇3
|, 

and in general the error indicator will be 

𝜀𝑇 = max
𝑖=1,2,3

𝜀𝑇𝑖
.          (7) 

Mesh adaptivity 

With an appropriate criterion for the error indicator, 

one can effectively decide on which portion of the 

computational mesh to refine. This is practical about 

any adaptive mesh method, with respect to the 
refinement or coarsening of certain regions. Some 

methods that have been used for marking cells in a 

triangle for coarsening or refining include the fixed 

function strategy in Georgoulis et al.[12] and the 

bulking strategy by Chen and Zhang [13]. A good 

criteria to employ in marking cells for refining or 

coarsening is the following definition. 

Definition 1 

Let 𝜀∗ = max
𝑇∈𝒯

𝜀𝑇 , and let 𝜗𝑟 , 𝜗𝑑 be two threshold 

values satisfying 0 <  𝜗𝑑 < 𝜗𝑟 < 1. We say that a 

cell 𝑇 ∈ 𝒯 is to be refined if and only if 𝜀𝑇 > 𝜗𝑟 . 𝜀∗ 

and 𝑇 is coarsened or derefined if and only if 𝜀𝑇 >
𝜗𝑑. 𝜀∗.  

In this numerical experiment, the threshold values 

 𝜗𝑟 = 0.005 and , 𝜗𝑑 = 0.002      (8) 

will be used. In contrast to fixed mesh computations, 

a new mesh is generated at each time step and so a 

new set of Gaussian points need to be computed. The 

WENO reconstruction is then performed only after 

the mesh adaptation is completed. 

 

III.  RESULTS 

We will demonstrate the benefits of mesh adaptivity 

by solving the linear advection equation and the 
Burger’s equation using mesh adaptation with mesh 

size ℎ = 1/16, on the computational domain  Ω =
[−0.5, 0.5] × [−0.5,0.5]. The solution to these 

problems are presented, first with three mesh sizes 

and then with the adapted mesh. 

The linear advection equation  

𝑢𝑡 + 𝑢𝑥 + 𝑢𝑦 = 0   for 𝑢 ≡ 𝑢(𝑡, 𝐱)  with 𝐱 =

(𝑥, 𝑦) ∈ ℝ2          (9) 
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with the initial condition  

𝑢(𝐱) = {
exp

‖𝐱−c‖2

‖𝐱−c‖2−ℝ2 ,   ‖𝐱 − c‖ < 𝑅

0,                     otherwise                        
(10) 

is first solved on fixed meshes of  1/16, 1/32 and 

1/64 with a final time of 𝑇 = 0.5, and then on the 

adapted mesh. 

  

(a) (b) 

  

(c) (d) 

Fig 1: Solution of the linear advection equation at times 

  (a) t=0, (b) t=0.2, (c) t=0.4 and (d) t=0.5 using the 
  L-WENO scheme on mesh size h=1/16 
 
 

  

(a) (b) 

  

(c) (d) 

Fig 2: Solution of the linear advection equation at times 
  (a) t=0, (b) t=0.2, (c) t=0.4 and (d) t=0.5 using the 
  L-WENO scheme on mesh size h=1/32 
 

  

(a) (b) 

  

(c) (d) 

Fig 3: Solution of the linear advection equation at times 

  (a) t=0, (b) t=0.2, (c) t=0.4 and (d) t=0.5 using the 

  L-WENO scheme on mesh size h=1/64 
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(a) (b) 

  

(c) (d) 

Fig 4: Adapted mesh for the solution of the linear  
  advection equation at times (a) t=0, (b) t=0.2,  
  (c) t=0.4 and (d) t= 0.5 using L-WENO method. 
 

  

(a) (b) 

  

(c) (d) 

Fig 5: Solution of linear advection equation at times 
  (a) t=0, (b) t=0.2, (c) t=0.4 and (d) t= 0.5 using L-
  WENO method on the adapted mesh. 
 

 

Fig 6: Number of cells for the adapted mesh during the 
  simulation of the linear advection equation 

 

Table - 1 Comparing minimum and maximum values, 
maximum number of cells and elapsed time for the 

solution of the linear advection equation on the fixed 
meshes and on the adapted mesh 

 
Mesh Minimum(u) Maximum(u) Maximum 

number of 

cells 

Elapsed 

time 

1/16 -2.141447 x 

10-4 

1.121321 512 314.19s 

1/32 -7.870207 x 

10-4 

0.998503 2048 2541.38s 

1/64 -0.002089 1.000562 8192 20086.05s 

adapted 

mesh 

-1.421939 x 

10-4 

1.001099 2026 6289.52s 

 

The Burger’s equation  

𝑢𝑡 + (
1

2
𝑢2)

𝑥
+ (

1

2
𝑢2)

𝑦
= 0       

   (11)  

with the initial condition (10) is also solved on the 

computational domain   Ω = [−0.5, 0.5] ×
[−0.5,0.5] on fixed meshes of  1/16, 1/32 and 

1/64 with a final time of 𝑇 = 0.5, and then on the 

adapted mesh. 
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(a) (b) 

  

(c) (d) 

Fig 7: Solution of the Burgers equation at times (a) t=0, 
  (b) t=0.4, (c) t=0.8 and (d) t=1.2 using the L- 
  WENO scheme on mesh size h=1/16. 

  

(a) (b) 

  

(c) (d) 

Fig 8: Solution of the Burgers equation at times (a) t=0,  

  (b) t=0.4, (c) t=0.8 and (d) t=1.2 using the L- 
  WENO scheme on mesh with h=1/32. 

  

(a) (b) 

  

(c) (d) 

Fig 9: Solution of the Burgers equation at times (a) t=0, 

  (b) t=0.4, (c) t=0.8 and (d) t=1.2 using the L- 
  WENO scheme on mesh size h=1/64. 

(a) (b) 

(c) (d) 

Fig 10: Adapted mesh for the solution of the Burger’s  
  equation at times (a) t=0, (b) t=0.4, (c) t=0.8 and 
  (d) t= 1.2 using L-WENO method. 
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(a) (b) 

(c) (d) 

Fig 11: Solution of Burger’s equation at times (a) t=0,  
  (b) t=0.4, (c) t=0.8 and (d) t= 1.2 using L-WENO 
  method on the adapted mesh. 

 

Fig 12: Number of cells for the adapted mesh during the 
  simulation of the Burgers’ equation. 

 

 

 

 

 

Table-2 Comparing minimum and maximum 

values, maximum number of cells and elapsed time 

for the solution of the Burgers equation on fixed 

meshes and on the adapted mesh 

 
Mesh Minimum(u) Maximum(u) Maximum 

Number of 

cells 

Elapsed 

time 

1/16 -8.690456 x 10-8 1.010109 512 720.45s 

1/32 -3.280590 x 10-7 0.998503 2048 5844.4s 

1/64 -1.907082 x 10-6 0.999363 8192 48488.6s 

adapted 

mesh 

-2.050222 x 10-4 1.003887 1820 14238.13s 

 

IV.  CONCLUSION 

In this work, adaptivity was used as a tool to improve 

the L-WENO method of Soomiyol et al., the linear 

advection equation and the Burger’s equation was 

used to validate the performance of the mesh 

adaptivity. The values on Table 1 and Table 2 show 

that the quality of the numerical approximation using 

the L-WENO method has been improved using the 

mesh adaptation algorithm. A large mesh size was 

used, and the procedure was able to refine the mesh 

at the points of discontinuity only, by coarsening the 
computational mesh over some portions of the 

computational domain based on some criterion 

thereby producing very fine results at a minimal 

computational time and cost. 

V.   REFERENCES 

 

[1] Tang H. and Tang T. (2003). Adaptive Mesh 

Methods for One-and Two- dimensional 
Hyperbolic Conservation Laws. Society for 

Industrial and Applied Mathematics Journal on 

Numerical Analysis, 41(2): (pp. 487-515). 

[2] Aboiyar T., Georgoulis E. H. and Iske A. (2010). 

Adaptive ADER  Methods Using Kernel Based 

Polyharmonic Spline WENO Reconstruction. 

Society For Industrial and Applied  Mathematics 

Journal on Scientific Computing, 32(6): (pp. 3251-

3277). 

[3] Shen C., Qiu J.M. and Christlieb A. (2011). 

Adaptive Mesh Refinement Based on  High Order 

Finite Difference WENO Scheme for Multi-scale 

Simulations. Journal of  Computational Physics, 
230(10): (pp. 3780-3802). 

[4] Dumbser M., Zanotti O., Hidalgo A. and Balsara 

D. S. (2013). ADER-WENO finite volume schemes 

with space–time adaptive mesh refinement. Journal 

of  Computational Physics, 248 (pp.  257-286). 



              International Journal of Engineering Applied Sciences and Technology, 2021    

                                        Vol. 6, Issue 6, ISSN No. 2455-2143, Pages 1-7 

                           Published Online October 2021 in IJEAST (http://www.ijeast.com)                                                                                                                                                                                                                                                                                                                                                                                                                    

 

7 

 
 

[5] Colella P., Dorr M., Hittinger J., Martin D. F. and 

McCorquodale P.  (2009). High-order Finite-

volume Adaptive Methods on Locally  Rectangular 

Grids. In: Journal of Physics: Conference Series, 

180(1): (p. 012010). 

[6] Zhang Q., Johansen H. and Colella P. (2012). A 

Fourth-order Accurate  Finite-volume Method with 

Structured Adaptive Mesh Refinement  for 

Solving the Advection-diffusion Equation. Society 

for Industrial and Applied Mathematics Journal on 

Scientific  Computing, 34(2): (pp. B179-B201). 

[7] Li R. (2005). On multi-mesh h-adaptive 

methods. Journal of Scientific Computing, 24(3), 

(pp. 321-341). 

[8] Soomiyol M.C., Aboiyar T., and Shior M. 

(2020). The Legendre-WENO Method. IOSR 

Journal of Mathematics, 16(3): (pp. 14-23). 

[9] Liu Y. and Zhang Y.T. (2013). A Robust 

Reconstruction for Unstructured WENO Schemes. 

Journal of Scientific Computing,  54(2-3): (pp. 

603-621). 

[10] Nochetto R., Schmidt A. and Verdi C. (2000). 
A Posteriori Error Estimation and  Adaptivity for 

Degenerate Parabolic Problems. Mathematics of 

Computation of the  American Mathematical 

Society, 69(229): (pp. 1-24). 

[11] Kurganov A., Petrova G. and Popov B. (2007). 

Adaptive Semidiscrete Central-upwind  Schemes for 

Nonconvex Hyperbolic Conservation Laws. Society 

for Industrial and  Applied Mathematics Journal 

on  Scientific Computing, 29(6): (pp. 2381-2401). 

[12] Georgoulis E.H., Hall E. and Houston P. (2009). 

Discontinuous Galerkin Methods on hp-
anisotropic Meshes II: A posteriori Error Analysis 

and Adaptivity. Applied Numerical Mathematics, 

59(9): (pp. 2179-2194). 

[13] Chen L. and Zhang C.S. (2007). A coarsening 

algorithm on  adaptive grids by newest vertex 

bisection and its applications. Journal of 

Computations Mathematics, 28(6): (pp. 767-789).  


